

$\mathsf{MBTI}^{\mathbb{R}}$ Step I^{m} instrument

European Data Supplement

December 2016

OPP Ltd Elsfield Hall 15–17 Elsfield Way Oxford OX2 8EP UK t: +44 (0)1865 404 500

MBTI Step I European Data Supplement

© Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner. No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

- ® MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe. ™ Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.
- ® FIRO-B and the FIRO-B logo are trade marks or registered trade marks of CPP, Inc. in the United States and other countries. OPP Ltd is licensed to use the trade mark in Europe.
- ® 16pf is a registered trade mark of the Institute for Personality and Ability Testing, Inc. (IPAT). IPAT is a subsidiary of Performance Assessment Network, Inc. (PAN).
- $\@$ OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. $^{\mbox{\scriptsize TM}}$ OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Contents

Chapter 1:	
Introduction and overview	4
What is included in this supplement	5
Overview of findings	6
Type distributions	6
Reliability	8
Intercorrelations between MBTI dimensions	9
Validity	9
Group differences	11
Chapter 2: English (European) data	19
Chapter 3: Danish data	83
Chapter 4: Dutch data	107
Chapter 5: Finnish data	143
Chapter 6: French data	157
Chapter 7: German data	183
Chapter 8: Greek data	211
Chapter 9: Italian data	227
Chapter 10: Norwegian data	243
Chapter 11: Polish data	257
Chapter 12: Portuguese data	283
Chapter 13: Russian data	303
Chapter 14: Spanish data	331
Chapter 15: Swedish data	345
Chapter 16: Turkish data	377
Chapter 17: Bibliography and Step I references	391

Introduction and overview

OPP Ltd is the exclusive European distributor of the MBTI[®] Step I[™] instrument, and over the past 20 years has embarked on a programme to develop and launch additional European language versions of the instrument. At the time of writing, the MBTI Step I instrument is commercially available in 15 European languages.

This European data supplement has been written to provide MBTI Step I users with a single source of information containing a summary of the research data gathered for European language versions of the MBTI Step I questionnaire. As such, it includes a combination of new (not previously published) research, alongside information drawn from existing sources. The aim has been to produce a single, easily accessible resource that will better serve multilingual use of the instrument, written in a format that allows for easy updates as more data become available.

The supplement has been split into discrete chapters, with each language version of the questionnaire having its own dedicated chapter. The aim is that each chapter can be read as a stand-alone document, and hence there is some duplication of text across each one. The structure of the supplement will allow existing chapters to be updated as more data become available, and new sections to be added as further language versions of the questionnaire are launched.

What is included in this supplement

The supplement contains information on Step I Type distributions, reliability, validity and group differences for the following language versions:

- Danish
- Dutch
- English (European)
- French
- German
- Polish
- Russian
- Swedish.

It contains the equivalent information for the following language versions, with the exception of best-fit validity (as these data are not yet available):

- Finnish
- Greek
- Italian
- Norwegian
- Portuguese (European)
- Spanish (European)
- Turkish.

Overview of findings

What follows is a short summary of several of the key findings. These and other findings are presented in more detail in the relevant language chapter of this supplement. The data described within this supplement show the psychometric properties of the instrument to be credible, and demonstrate a high degree of consistency across the various European language versions of the Step I questionnaire.

Type distributions

Type distributions are presented within the supplement for each language version of the questionnaire. These will be of particular interest to MBTI users who work with groups of people who complete the questionnaire in different languages. The distributions are presented but are not discussed in great detail. For a more detailed discussion of psychological Type and culture, readers are referred to Type and Culture: Using the MBTI® Instrument in International Applications (Kirby, Kendall and Barger, 2007), which is available from OPP Ltd.

Table 1.1 below shows a comparison of the distributions from samples that are considered representative of the groups of people with whom the MBTI instrument has been and will be used for applications such as management development, coaching, counselling and team development. The degree of similarity across language versions is quite striking. This provides strong evidence to suggest that the psychological Type of managers and professionals follows a very consistent pattern in the countries from which we have data.

Table 1.1: Similarities in preference distributions across language versions

Language version			F	Propor	tion (%	6)		
	Е	I	S	N	Т	F	J	Р
Danish (n=13,561)	75	25	58	42	76	24	62	38
Dutch (n=13,430)	74	26	56	44	70	30	54	46
English (European) (n=167,824)	75	25	58	42	76	24	62	38
Finnish (n=665)	72	28	53	47	83	17	74	26
French (n=8,038)	64	36	59	41	70	30	66	34
German (n=11,515)	72	28	54	46	81	19	73	27
Greek (n=595)	64	36	51	49	76	24	76.5	23.5
Italian (n=1,987)	66	34	57	43	76	24	75	25
Norwegian (n=915)	80	20	68	32	85	15	69	31
Polish (n=8,006)	68	32	52	48	80	20	76	24
Portuguese (n=3,427)	70	30	72	28	81	19	76	24
Russian (n=7,844)	58	42	63	37	87	13	84	16
Spanish (n=1,527)	76	24	62	38	92	8	76	24
Swedish (n=1,817)	77	23	59	41	66	34	61	39
Turkish (n=210)	75	25	55	45	89.5	10.5	85	15
Median	72	28	58	42	80	20	74	26

The data gathered from across language versions for this sample of people is summarised in the form of a Type table below. Type tables are a way of illustrating the proportion of each Type within a particular group. The data show ESTJ (21%) and ENTJ (14%) to be the most frequently occurring Types amongst this group.¹

Table 1.2: Type table for whole sample across language versions (n=241,361)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=30,543 12.7%	n=6,443 2.7%	n=3,214 1.3%	n=12,869 5.3%	E I	163,988 77,373	67.9% 32.0%
ISTP	ISFP	INFP	INTP	S	130,814	54.2%
n=7,847 2.0%	n=2,011 0.8%	n=3,685 1.5%	n=10,761 4.5%	N	110,547	45.8%
	0.075	1.075		T	184,528	76.5%
ESTP	ESFP	ENFP	ENTP	F	56,833	23.5%
n=13,438 5.6%	n=4,972 2.1%	n=12,196 5.1%	n=24,603 10.2%	J P	161,848 79,513	67.1% 32.9%
ESTJ	ESFJ	ENFJ	ENTJ			
n=51,432 21.3%	n=14,128 5.9%	n=10,184 4.2%	n=33,035 13.7%			

Reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. Internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951).

The alpha coefficients for the managerial and professional samples discussed above are shown in Table 1.3, together with the size of each sample. It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable.² On this basis, all the dimensions of the questionnaire show good internal consistency reliability in all languages.

മ

¹ It should be noted that over 75% of the group completed the European English language version of the questionnaire, so the Type table will reflect this.

questionnaire, so the Type table will reflect this.

² For example, see Nunnally (1978) or Kline (2000).

Table 1.3: Internal consistency reliability

Language version	F	Alpha co	efficie	nt
	E-I	S-N	T-F	J-P
Danish (n=13,561)	0.84	0.82	0.74	0.81
Dutch (n=13,430)	0.85	0.77	0.80	0.83
English (European) (n=167,824)	0.85	0.82	0.81	0.83
Finnish (n=665)	0.86	0.78	0.78	0.80
French (n=8,038)	0.84	0.79	0.75	0.80
German (n=11,515)	0.83	0.72	0.77	0.79
Greek (n=595)	0.81	0.74	0.78	0.80
Italian (n=1,987)	0.81	0.75	0.74	0.78
Norwegian (n=915)	0.84	0.80	0.72	0.80
Polish (n=8,006)	0.87	0.79	0.81	0.81
Portuguese (n=3,427)	0.84	0.73	0.73	0.77
Russian (n=7,844)	0.82	0.75	0.79	0.80
Spanish (n=1,527)	0.83	0.79	0.73	0.79
Swedish (n=1,817)	0.82	0.72	0.76	0.79
Turkish (n=210)	0.87	0.76	0.71	0.75
Median	0.84	0.78	0.76	0.80

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Previous results from other language versions have shown that this was achieved with all dimensions except between Sensing—iNtuition and Judging—Perceiving.

During these latest analyses, only very low correlations have been found between most of the dimensions. However, the S–N/J–P relationship that has been found previously has been replicated across language versions, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving.

Validity

The aim of the MBTI instrument is to help individuals to establish their validated or 'best-fit' psychological Type. A key measure of the validity of the instrument is, therefore, how well the results relate to best-fit (validated) Type.

Table 1.4 presents the results of the analyses conducted to compare reported Type with best-fit Type across the different language versions.³ The results show that around 90% of people agree with

³ Two sets of results are shown each for the Dutch, French and German language versions, summarising the results of two separate studies that have been conducted for each of these language versions.

three or more of their reported dimensions, with between 48% and 72% agreeing with all four letters. When this is broken down to the individual dimensions, it is found that approximately 90% agree with each of their reported dimension preferences. This provides good evidence for the accuracy of the instrument across the language versions for which we have data. Note that where data are not presented for a particular language version, it is because the necessary data are not yet available.

Table 1.4: Comparison of reported and best-fit Type results

Language v	/ersion	Respondents agreeing with				Respondents agreeing with				
		total	numbe	rs of di	mens	ions	each p	particula	r dimer	nsion
				(%)				(%)	
		4	3	2	1	0	E-I	S-N	T-F	J-P
Danish	(n=221)	56.1	35.7	6.8	0.9	0.5	91.4	90.0	75.6	89.1
	(n=183)	71.0	24.6	3.8	0.5	0.0	93.4	87.4	90.2	95.1
Dutch	(n=199)	71.9	21.1	6.0	1.0	0.0	91.5	91.0	87.4	94.0
	(n=197)	71.6	21.3	5.6	1.0	0.5	89.8	92.4	89.8	90.4
English (European)	(n=386)	71.5	21.5	6.1	0.3	0.3	92.1	93.8	88.4	89.0
French	(n=578)	67.8	25.3	6.1	0.7	0.2	90.1	91.0	88.3	90.6
	(n=363)	62.3	31.1	4.9	1.7	0.0	89.8	91.6	86.8	86.8
German	(n=323)	59.8	28.8	9.9	1.2	0.3	90.1	84.5	84.8	87.0
	(n=110)	62.7	30.9	5.5	0.9	0.0	93.6	87.3	87.3	87.3
Polish	(n=271)	48.3	30.6	16.2	4.1	0.8	84.5	81.2	79.3	76.8
Russian	(n=201)	57.7	26.9	10.4	4.5	0.5	89.6	86.1	79.6	81.6
Swedish	(n=70)	59.0	34.0	7.0	0.0	0.0	94.0	79.0	90.0	88.0
Median		62.5	27.9	6.1	1.0	0.3	90.8	88.7	87.4	88.5
Median (at least three dimensions agreed)		93	3.0					1		

The results of additional construct validity research conducted using the English (European) and Swedish versions of the questionnaire have demonstrated that respondents of different Types have preferences for different types of organisational cultures and jobs that are consistent with what we would expect from Type theory, and that scores on the MBTI Step I dimensions show clear relationships in the expected direction with scores on other instruments that measure related psychological constructs.

Group differences

Analyses were conducted to explore links between MBTI Type and various demographic variables. These variables included gender, age, age at which the person left full-time education, occupational level, work area, nationality and employment status. By way of summary, the group differences results for the whole sample across language versions are described below. Note that over 75% of the group completed the European English language version of the questionnaire, so the results will reflect this. There were many interesting findings for the different language versions, and the reader is therefore invited to refer to the individual chapters for further details.

The analyses below do not include data from Greek, Portuguese and Turkish. They also use the smaller, development samples for the Russian and Polish languages. This is because analyses of more recent data for these languages were largely similar to the findings below. Also, due to the large sample sizes in the below analyses, additional data would be unlikely to change the results.

Gender

Across the whole sample, there is a significant gender difference on the Thinking–Feeling dimension, as shown in Figure 1.1 below: 4

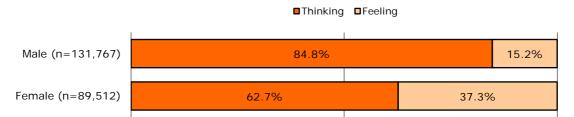


Figure 1.1: Gender differences on the T–F dimension

Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women. This effect has been found many times with many different language versions of the MBTI instrument in a number of different cultures.

Age

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

⁴ Significant at p<0.001, based on the results of chi-square analysis (often abbreviated to χ^2). Chi-square analysis is a technique used to explore whether observed frequency distributions differ significantly from other, pre-defined, distributions.

The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, Sensing versus iNtuition, Thinking versus Feeling and Judging versus Perceiving. An analysis of the data from the whole OPPassessment sample showed a statistically significant and meaningful relationship between age and only one of the dimensions, as shown in Table 1.5. The mean age of people with a preference for Introversion was approximately 1½ years higher than of those with a preference for Extraversion. Although statistically significant, the difference is still small in real terms. Differences for the other three dimensions were in the region of 6 months or less.

Table 1.5: Significant mean age differences

	Extraversion	Introversion	Difference	Significance
Mean age	37.02	38.26	1.24	***
(years)				

^{***}Difference significant at p<0.001.

Occupational level

Previous research has demonstrated that individuals in higher-level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower-level jobs (Quenk, Hammer and Majors, 2004).

This is reflected in the relationship of the Sensing–iNtuition and Thinking–Feeling dimensions with occupational level in the OPPassessment sample.

The data suggest that individuals at the top occupational level are most likely to have a preference for iNtuition, followed by senior executives and upper middle management. The proportions of people with preferences for iNtuition were lowest amongst people from middle management down to employee level, as shown in Figure 1.2.

⁵ Significant at p<0.001, based on the results from independent-samples t-tests.

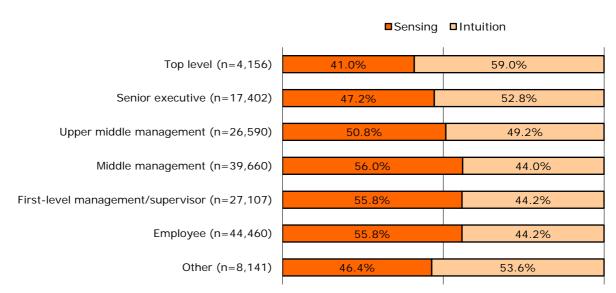


Figure 1.2: Sensing-iNtuition⁶ and occupational level

It was also found that those with preferences for Thinking are slightly under-represented at employee level and (to some extent) first-level management/supervisor level, as shown in Figure 1.3. All other occupational levels contained a similar (higher) proportion of Thinking Types.

■Thinking ■Feeling Top level (n=4,156)19.9% 80.1% Senior executive (n=17,402) 81.8% 18.2% Upper middle management (n=26,590) 81.9% 18.1% Middle management (n=39,660) 79.0% 21.0% First-level management/supervisor (n=27,107) 75.2% 24.8% Employee (n=44,460) 67.4% 32.6% Other (n=8,141) 73.8% 26.2%

Figure 1.3: Thinking–Feeling⁷ and occupational level

Education

Specific educational qualification data were not collected for the OPPassessment sample; however, the age at which individuals left full-time education was. Those who left full-time education at an older age

 $_{7}^{6}\chi^{2}=1,240.82$; significant at p<0.001.

 $^{^{7}\}chi^{2}$ =2,858.38; significant at p<0.001.

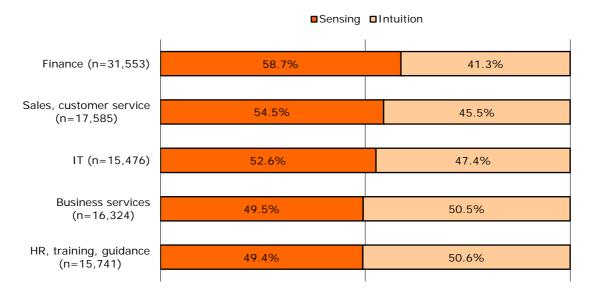
MBTI Step I European Data Supplement

were significantly more likely to have preferences for Extraversion, iNtuition, Thinking and/or Perceiving. However, whilst statistically significant, the differences were all less than one year in real terms.

Work area

Previous Type research suggests that an individual's Type influences their choice of career (Hammer, 1998), and indeed the data in this supplement show there is a statistically significant relationship between each of the dimensions and job type. In the figures that follow, the five most common work areas have been re-ordered according to the percentage of E, S, T or J.

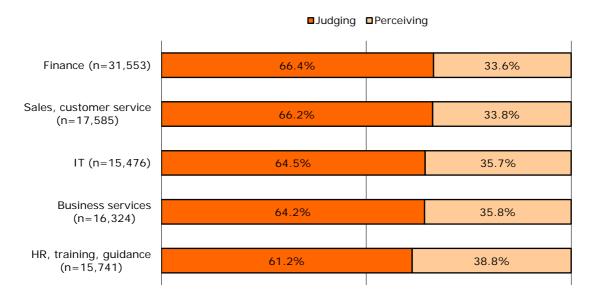
⁸ Independent-samples t-test; all significant at p<0.001.


37.1%

■Extraversion ■Introversion Sales, customer service 79.6% 20.4% (n=17,585)HR, training, guidance (n=15,741) 73.2% 26.8% Business services 70.5% 29.5% (n=16,324)Finance (n=31,553) 66.2% 33.8%

62.9%

Figure 1.4: Extraversion–Introversion⁹ and work area


IT (n=15,476)

 $^{^9}$ $\chi^2{=}2,045.38;$ significant at p<0.001. 10 $\chi^2{=}1,957.23;$ significant at p<0.001.

■Thinking ■Feeling IT (n=15,476) 17.4% 82.6% Finance (n=31,553) 79.5% 20.5% Business services 77.9% 22.1% (n=16,324)Sales, customer service 77.1% 22.9% (n=17,585) HR, training, guidance (n=15,741) 62.3% 37.7%

Figure 1.6: Thinking-Feeling¹¹ and work area

Figure 1.7: Judging-Perceiving¹² and work area

16

 $^{^{11}}$ χ^2 =6,409.54; significant at p<0.001. 12 χ^2 =502.45; significant at p<0.001.

Employment status

Employment status information was available for the sample. The analyses showed statistically significant and meaningful differences across the groups on three dimensions: Sensing-iNtuition, Thinking-Feeling and Judging-Perceiving. Amongst those in employment, selfemployed people were considerably more likely to have a preference for iNtuition¹³, and slightly more likely to have a preference for Perceiving¹⁴, than those who described themselves as working fulltime or part-time. Those who worked full-time were more likely to have a preference for Thinking than those who were self-employed, who in turn were more likely to have a preference for Thinking than those who worked part-time. 15 The Thinking-Feeling pattern is likely to be a gender effect; 85% of part-time workers were female, compared with 40% of the total group and 37% of full-time workers.

 $^{^{13}}$ $\chi^2{=}458.73;$ significant at p<0.001. 14 $\chi^2{=}206.17;$ significant at p<0.001. 15 $\chi^2{=}2,206.05;$ significant at p<0.001.

 $\mathsf{MBTI}^{\mathbb{R}}$ Step I^{m} instrument

European Data Supplement

English (European)

January 2009

OPP Ltd Elsfield Hall 15–17 Elsfield Way Oxford OX2 8EP UK t: +44 (0)1865 404 500

Contents

Introduction	22
Type distribution	23
UK general population sample	.24
OPPassessment data (representative European English-speaking	
professionals and managers)	.25
Management development programme participants	.26
Outplacement interviewing and counselling sample	
Reliability	
Intercorrelations between MBTI dimensions	.30
Best-fit validity: the accuracy of the European English MBTI Step I	
instrument in predicting best-fit Type	.31
Construct validity	
Comfort with different organisational cultures	.34
Comfort with different Types of job	
Job characteristics and whole Type	.37
Correlations with other instruments	.38
Group differences in Type	.58
Gender	
Age	.59
Ethnic origin	.60
Occupational level	63
Education	.65
Work area	.65
Nationality	.70
Employment status	.71
Appendix 1: Sample descriptions	.72
Sample 1: UK general population sample	.72
Sample 2: Data from OPPassessment (representative European	
English-speaking professional and managerial sample)	.73
Sample 3: Management development programme participants	.75
Sample 4: Outplacement interviewing and counselling sample	.75
Appendix 2: Full analysis of Adjective Check List data	.76
Appendix 3: Brief summary of what the 16PF instrument measures.	.81

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner. No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

[©] Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

[®] MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe. The Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

[®] FIRO-B and the FIRO-B logo are trade marks or registered trade marks of CPP, Inc. in the United States and other countries. OPP Ltd is licensed to use the trade mark in Europe.

^{® 16}pf is a registered trade mark of the Institute for Personality and Ability Testing, Inc. (IPAT). IPAT is a subsidiary of Performance Assessment Network, Inc. (PAN). OPP Ltd is permitted to use the trade mark.

[©] OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. TM OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Introduction

Data from four different samples were analysed to produce the findings in this chapter. A brief description of each sample is given below. Further details of the samples are provided in Appendix 1.

- A group of 1,634 individuals, specifically sampled by the Office of National Statistics to be representative of the UK general population. The group completed a version of the MBTI® questionnaire in 1996 during the initial development of the European Step I questionnaire.
- A group of 167,824 individuals who completed the MBTI Step I questionnaire in European English via the OPPassessment system between March 2003 and mid-2008. 16 This sample is considered to be representative of the groups of people with whom the European English MBTI instrument has been and will be used for applications such as management development, coaching, counselling and teambuilding. As such, it is likely to represent a cross-section of the European English-speaking professional and managerial population.
- A group of 4,575 UK participants on management development programmes at Ashridge Business School, run between 2000 and 2003. ¹⁷
- A sample of 695 individuals who completed the MBTI Step I questionnaire (or knew their MBTI reported Type) and the 16PF®5 questionnaire as part of outplacement interviewing and counselling between September 1997 and June 2003.

The results of the analyses are outlined below.

¹⁶ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via email and/or completed online.

17 Data reproduced with kind permission from Ashridge Business School.

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. Below are four Type tables taken from the samples described above, namely the UK general population sample, the professional and managerial group taken from OPPassessment, the Ashridge management development programme participants, and the outplacement interviewing and counselling sample.

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group. The UK general population dataset is used as the reference group when calculating the SSRs in this chapter.

An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is under-represented. Asterisks are used to denote whether the over- or under-representations are statistically significant, based on the results of chi-square analysis. 18

23

 $^{^{18}}$ Chi-square analysis (often abbreviated to $\chi^2)$ is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the UK general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each Type within a particular sample differs significantly from the proportion of people reporting the same Type within the reference group.

UK general population sample 19

Table 2.1: Type table for the UK general population sample²⁰ (reported Type, n=1,634)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=224	n=208	n=28	n=23	E	854	52.6%
13.7%	12.7%	1.7%	1.4%	I	780	47.4%
ISTP	ISFP	INFP	INTP	S	1,250	76.5%
n=105	n=100	n=52	n=40	N	384	23.5%
6.4%	6.1%	3.2%	2.4%	Т	750	45.9%
ESTP	ESFP	ENFP	ENTP	- F	884	54.1%
n=95	n=142	n=103	n=45	J	952	58.3%
5.8%	8.7%	6.3%	2.8%	P	682	41.7%
ESTJ	ESFJ	ENFJ	ENTJ			
n=170	n=206	n=45	n=48			
10.4%	12.6%	2.8%	2.9%			

The most common single Type preference is ISTJ (14% of the total), closely followed by ISFJ (13%), ESFJ (13%) and ESTJ (10%). The least frequently occurring Type is INTJ (1%), followed by INFJ and INTP (both 2%), and ENTP, ENFJ and ENTJ (all 3%).

This pattern is not dissimilar to that found in the USA (Hammer and Mitchell, 1996) and Sweden (*MBTI Step I Swedish Version Manual Supplement*, 2003), the only other countries for which data from nationally representative samples have been collected.

24

¹⁹ Reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.

²⁰ Note that no SSRs are shown in this table because the table contains the reference group itself. Reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.

OPPassessment data (representative European Englishspeaking professionals and managers)

Table 2.2: Type table for OPPassessment data (reported Type, n=167,824)

				_		
ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=20,852	n=4,619	n=2,410	n=9,582	E	112,530	67.1%**
12.4%	2.8%	1.4%	5.7%	1	55,294	32.9%**
SSR=0.91	SSR=0.22**	SSR=0.84	SSR=4.06**			
ISTP	LCED	LNED	INTP	S	88,344	52.6%*
131P	ISFP	INFP	INIP	- N	79,480	47.4%*
n=5,517	n=1,353	n=2,670	n=8,291		,	
3.3%	0.8%	1.6%	4.9%	Т	127,885	76.2%**
SSR=0.51**	SSR=0.13**	SSR=0.50**	SSR=2.02**	F	39,939	23.8%**
ESTP	ESFP	ENFP	ENTP	'	07,707	20.070
n=8,960	n=3,220	n=8,498	n=17,761	J	111,554	66.5%*
5.3%	1.9%	5.1%	10.6%	P	56,270	33.5%*
SSR=0.92	SSR=0.22**	SSR=0.80*	SSR=3.84**		00,270	33.373
ESTJ	ESFJ	ENFJ	ENTJ			
n=33,910	n=9,913	n=7,256	n=23,012			
20.2%	5.9%	4.3%	13.7%			
SSR=1.94**	SSR=0.47**	SSR=1.57**	SSR=4.67**			

^{*}Difference significant at p<0.05, based on chi-square results.

The most common single Type preference is ESTJ (20% of the total); this is a common finding with managerial groups in other countries. The SSR results suggest that, in comparison with the general population, those with preferences for NT are over-represented, and those with preferences for SF are under-represented. Again, this is a common finding with managerial groups in other countries.

^{**}Difference significant at p<0.01, based on chi-square results.

Management development programme participants

Table 2.3: Type table for management development course participants (reported Type, n=4,575)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=661	n=77	n=53	n=420	E	2,707	59.2%**
14.4%	1.7%	1.2%	9.2%	1	1,868	40.8%**
SSR=1.05	SSR=0.13**	SSR=0.68	SSR=6.52**			
1070			LAITE	S	2,152	47.0%**
ISTP	ISFP	INFP	INTP	N	2,423	53.0%**
n=184	n=34	n=73	n=366		_,	
4.0%	0.7%	1.6%	8.0%	Т	3,894	85.1%**
SSR=0.63**	SSR=0.12**	SSR=0.50**	SSR=3.27**	F	681	14.9%**
ESTP	ESFP	ENFP	ENTP	'	001	11.770
n=214	n=51	n=177	n=560	J	2,916	63.7%**
4.7%	1.1%	3.9%	12.2%	P	1,659	36.3%**
SSR=0.80	SSR=0.13**	SSR=0.61**	SSR=4.44**		.,00,	00.070
ESTJ	ESFJ	ENFJ	ENTJ			
n=817	n=114	n=102	n=672			
17.9%	2.5%	2.2%	14.7%			
SSR=1.72**	SSR=0.20**	SSR=0.81	SSR=5.00**			

^{*}Difference significant at p<0.05, based on chi-square results.

The Type distribution is similar to the OPPassessment sample described in Table 2.2, with ESTJ (18% of the total) being the most common single Type preference, and NT being over-represented and SF being under-represented. The main difference between the two distributions is a higher proportion of people with a preference for Thinking amongst the management development group. This is likely to be at least partly a gender effect, as the above sample contains a higher proportion of males (77%) than does the OPPassessment group (59%).

^{**}Difference significant at p<0.01, based on chi-square results.

Outplacement interviewing and counselling sample

Table 2.4: Type table for outplacement interviewing and counselling sample (n=695)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=85	n=29	n=9	n=54	E	419	60.3%**
12.2%	4.2%	1.3%	7.8%	1	276	39.7%**
SSR=0.89	SSR=0.33**	SSR=0.76	SSR=5.52**			
1070				S	337	48.5%**
ISTP	ISFP	INFP	INTP	N	358	51.5%**
n=26	n=9	n=23	n=41			
3.7%	1.3%	3.3%	5.9%	Т	502	72.2%**
SSR=0.58*	SSR=0. 21**	SSR=1.04	SSR=2.41**	F	193	27.8%**
ESTP	ESFP	ENFP	ENTP	'	170	27.070
n=29	n=14	n=39	n=79]]	435	62.6%
4.2%	2.0%	5.6%	11.4%	P	260	37.4%
SSR=0.72	SSR=0.23**	SSR=0.89	SSR=4.13**	-		0,
ESTJ	ESFJ	ENFJ	ENTJ			
n=104	n=41	n=29	n=84			
15.0%	5.9%	4.2%	12.1%			
SSR=1.44**	SSR=0.47**	SSR=0.81	SSR=4.11**			

^{*}Difference significant at p<0.05, based on chi-square results.

The most common single Type preference is ESTJ (15% of the total); this is a common finding with other managerial groups, as are the SSR results, which suggest that, in comparison with the UK general population, those with preferences for NT are over-represented and those with preferences for SF are under-represented.

^{**}Difference significant at p<0.01, based on chi-square results.

Reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. Internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for the UK general population and OPPassessment samples are shown in Table 2.5.

Dimension	Coefficient alpha				
	General population ²¹	OPPassessment			
E-I	0.84	0.85			
S-N	0.80	0.82			
T–F	0.81	0.81			
J–P	0.82	0.83			

Table 2.5: Internal consistency reliability – alpha coefficients

Another method of looking at internal consistency involves calculating split-half reliability. Historically, the split-half reliabilities reported for the MBTI questionnaire were based on Myers' logical split-halves, in which she matched characteristics of items in each half. Following, as far as possible, Myers' own approach to a logical split of the items, split-half reliabilities have been calculated on the general population sample. These are shown in Table 2.6.

Table 2.6:	Internal consistency reliability – split-half

Dimension	Split-half reliability
	General population ⁶
E-I	0.82
S-N	0.81
T–F	0.84
J–P	0.84

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. ²² On this basis, all the dimensions of the questionnaire show good internal consistency reliability in the general population and OPPassessment groups, and using both methods of calculation. In addition, the alpha coefficients have been found to be consistent across different age groups and across males and females.

Test-retest reliability is another form of reliability, and is concerned with the consistency of results on the same instrument over time. It is calculated by correlating the results from the first time an instrument

_

²¹ Reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.

²² For example, see Nunnally (1978) or Kline (2000).

is taken with those of a subsequent administration after a suitable period of time has elapsed. The strength of these correlations is a measure of how consistent the instrument is over time. The test–retest correlations obtained with a one- to six-month interval between administrations are shown in Table 2.7, based on a sample of 81 individuals who knew their reported MBTI Type. The table also shows the proportion of people who had the same preference on both testing occasions for each dimension, and the proportion of people for whom four, three and two preferences remained the same on both occasions. None of the participants had fewer than two of their preferences remaining the same. These figures are all very satisfactory as regards test–retest reliability.

Table 2.7: Test-retest reliability

Dimension	Correlation
E_I	0.92
	7.1.
S-N	0.93
T–F	0.89
J_P	0.91

Dimension	Percentage reporting
the same preferen	
E-I	91%
S-N	95%
T–F	95%
J_P	93%

All four preferences remaining the same	79%	95%
Three preferences remaining the same	16%	93%
Two preferences remaining the same	5%	
Fewer than two preferences remaining the	0%	5%
same		

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. ²³ Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire. ⁸

The intercorrelations between dimensions amongst the general population and OPPassessment samples are shown in Table 2.8. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores.²⁴

Table 2.8: Intercorrelations between dimensions

	General population ⁸					
	E-I					
E-I		-0.18**	-0.13**	-0.13**		
S-N			0.08**	0.40**		
T-F				0.08**		
J-P						

	OPPa	OPPassessment			
	E-I	S-N	T-F	J-P	
E-I		-0.13**	-0.15**	-0.05**	
S-N			0.10**	0.41**	
T-F				0.11**	
J-P					

^{**}All correlations statistically significant at p<0.01.

Although statistically significant, only very low correlations were found between most of the dimensions. The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving. There was a high degree of consistency found in the correlations across the two samples.

 $^{^{23}}$ Reproduced from European English MBTI Step I Manual Supplement (1998) with kind permission of CPP Inc.

²⁴ Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

Best-fit validity: the accuracy of the European English MBTI Step I instrument in predicting best-fit Type

The purpose of the MBTI instrument is to help individuals to establish their validated or 'best-fit' psychological Type. A key measure of the validity of the instrument is, therefore, how well the results relate to best-fit (validated) Type. These data are useful to practitioners in knowing how typically accurate the reported result is likely to be.

Best-fit data are available for a group of 386 individuals who took part in a best-fit study during the development of the European Step I questionnaire. These individuals were all confident of their MBTI Type preferences, and were trained and experienced users of the MBTI questionnaire. ²⁵

Table 2.9 presents the results of the analysis comparing reported with best-fit Type. The European English MBTI Step I questionnaire performs in a very similar way to other European language versions, such as Danish, Dutch, French, German, Polish and Swedish, and there is very good evidence for the accuracy of the instrument. In nearly 72% of cases, a respondent's reported Type will match their best-fit Type, and in 93% of cases at least three of the four preferences will match.

Table 2.9: Match of reported and best-fit Type¹⁰

	Best-fit study participants (n=386)	
Agrees with all four letters	71.5%	93.0%
Agrees with three letters	21.5%	93.0%
Agrees with two letters	6.1%	
Agrees with one letter	0.3%	7.0%
Agrees with no letters	0.3%	

Dimension	Percentage agreement
	Best-fit study participants
	(n=386)
E-I	92.1%
S-N	93.8%
T–F	88.4%
J_P	89.0%

It is well recognised by users of the questionnaire that environmental pressures can affect individuals' responses to the items on the questionnaire. For instance, an individual may feel that their work environment pressures them to behave in a Judging way when their true preference is for Perceiving. Pressures such as these mean that an

²⁵ Reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.

individual's best-fit Type may be masked in the Type reported through the questionnaire.

Individuals who took part in the best-fit study were asked (a) whether they felt any pressures to report one Type over another and (b) if so, where they felt the roots of those pressures to be. There was a clear pattern on individuals feeling pressures to be E, S, T and J (in line with Myers' own hypothesis). Work and the organisational culture appear to be the main sources of these pressures. These data support the continued use of the tie-breaking formula, ie breaking tied scores in the direction of I, N, F and P (countering these pressures).

Figures 2.1–2.4 show, for the best-fit study, in which direction the pressures were felt to be. ²⁶

Figure 2.1: Percentage aware of pressures on themselves to be E or I

Figure 2.2: Percentage aware of pressures on themselves to be S or N

Figure 2.3: Percentage aware of pressures on themselves to be T or F

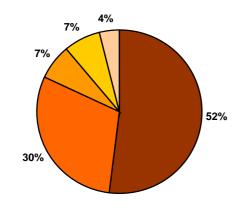
T (63.0%) F (37.0%)	
---------------------	--

Figure 2.4: Percentage aware of pressures on themselves to be J or P

J (85.6%)	J (85.6%)			P (14.4%)
-----------	-----------	--	--	-----------

32

²⁶ Text above and Figures 2.1–2.8 reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.


Figures 2.5–2.8 indicate where individuals felt those pressures had come from. To interpret the charts, please refer to the following key:

Nature of the work Organisational norms Family of origin Current family Other

Figure 2.5: Nature of pressures to be E or I

Figure 2.6: Nature of pressures to be S or N

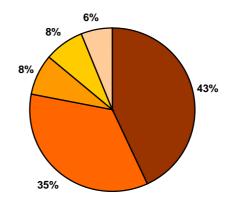
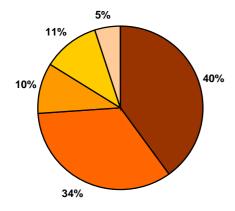
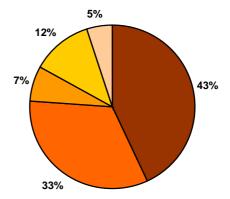




Figure 2.7: Nature of pressures to be T or F

Figure 2.8: Nature of pressures to be J or P

Construct validity

Construct validity is concerned with whether an instrument successfully measures a particular psychological construct. If it can be demonstrated that an instrument does do this, then the instrument can be said to have construct validity.

Construct validity can be measured in two ways. The first method is to correlate individuals' scores on the instrument with the behaviours they would be expected to show if they possessed the relevant psychological construct. The second method is to correlate scores on the instrument with those on another instrument which is already in existence and for which we already know what the scores measure.

In accordance with the first method, the UK general population sample were asked to respond to a number of questions about their views on work and organisational issues, as well as to complete the MBTI Step I questionnaire.

Comfort with different organisational cultures²⁷

The respondents were initially asked to record on a five-point scale their degree of comfort with different types of organisations, where 1 represented 'Very comfortable' and 5 'Very uncomfortable'. Prior to analysing the data, MBTI experts made predictions about the relationships between the MBTI dimensions and the responses to the questions. Once the predictions had been made, the data were analysed to explore the relationships between reported MBTI preferences and comfort with different organisational cultures. The questions, predictions and results are shown in Table 2.10. Asterisks in the significance column indicate significant relationships, based on the results of one-way analysis of variance. Where there are no asterisks, this signifies that the data did not support the prediction.

²⁷ Reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.

Table 2.10: Comfort expressed by different Types with different organisational cultures²⁸

Organisational characteristic	Pred	iction	Sig.
	More	Less	
	comfort	comfort	
An organisation which has clear structures so that it	S	N	***
is always clear who is responsible for what	J	Р	***
	SJ	Non-SJ	***
An organisation which emphasises the independence	N	S	*
of individual employees	NT	Non-NT	**
An organisation which emphasises employee loyalty	SJ	Non-SJ	***
and offers a 'job for life'	ISJ	Non-ISJ	**
An organisation where everything is done 'by the	SJ	Non-SJ	***
book'	STJ	Non-STJ	***
An organisation employing thousands of people,	E	1	***
possibly working in more than one country	EN	Non-EN	
An organisation where jobs of individual workers are	S	N	***
made as simple as possible	Non-NT	NT	***
An organisation with people from many different	NF	Non-NF	**
backgrounds	NFP	Non-NFP	***
An organisation where individual people may have	EN	Non-EN	*
responsibility for many different areas	SJ	Non-SJ	***
An organisation where everyone is expected to 'toe the line'			
	ISJ	Non-ISJ	***
An organisation where jobs are relatively insecure	EP	Non-EP	
but there are many opportunities for advancement and high pay	ETP	Non-ETP	**
An organisation where you are never expected to	S	N	***
work late or in your own time	J	Р	
	SJ	Non-SJ	***
An organisation with fewer than 30 employees	F	Т	***
where everyone knows everyone	SF	Non-SF	***
An organisation which views its employees as	F	Т	
individuals with particular skills	IF	Non-IF	
An organisation where most people come from the	S	N	***
same background	SJ	Non-SJ	***
	ISJ	Non-ISJ	***

Significant at: p<0.05, p<0.01, p<0.001.

Most of the predicted relationships were found to be supported by the data, with the majority being statistically significant at the highest level. Of the four non-significant relationships, perhaps the most surprising was that between Feeling and comfort with a culture where people were viewed as individuals with particular skills.

 $^{^{28}}$ Reproduced from European English MBTI Step I Manual Supplement (1998) with kind permission of CPP Inc.

Comfort with different types of job²⁹

Respondents were asked to record on a five-point scale their degree of comfort in working in different kinds of jobs, where 1 represented 'Very comfortable' and 5 'Very uncomfortable'. Predictions about the relationships between the MBTI dimensions and the responses to the questions were made in the same way as in the section above. The results are presented in Table 2.11.

Table 2.11: Comfort expressed by different Types with different kinds of jobs¹⁴

Job characteristic	Prediction		Sig.
	More	Less	
	comfort	comfort	
A job which involves you in a series of distinct projects	J	Р	*
	SJ	Non-SJ	
A job with a lot of variety, some of it unexpected	Р	J	***
	EP	Non-EP	***
	ENP	Non-ENP	***
A job where you would expect to report to the same manager from day to day	SJ	Non-SJ	***
	ISJ	Non-ISJ	*
	ISFJ	Non-ISFJ	*
A job in which more or less the same things	SJ	Non-SJ	***
happen every day	ISJ	Non-ISJ	***
A job which places lots of demands on you,	NT	Non-NT	***
sometimes requiring you to work long hours to	NTJ	Non-NTJ	***
reach deadlines or achieve goals			
A job where you would report to a number of	NP	Non-NP	**
different people depending on the task at hand	ENP	Non-ENP	***

Significant at: *p<0.05, **p<0.01, ***p<0.001.

Again, most of the relationships predicted by the theory were found to hold good in respect of reported Type. For example, it is unsurprising to find that dominant extraverted Intuitives expressed greater comfort with variety and unpredictability in their working lives than did other Types. The sole prediction unsupported by the data was that of SJs preferring a series of distinct work projects, which was based on the theory suggesting that SJs prefer structure and stability over the variety and unpredictability preferred by ENPs. This theme is explored further in the next set of results.

36

²⁹ Reproduced from European English MBTI Step I Manual Supplement (1998) with kind permission of CPP Inc.

Job characteristics and whole Type 30

In order to establish patterns of reported comfort with specific job characteristics at whole-Type level, the Types are ranked in Table 2.12 according to those who expressed most and least comfort respectively.

Table 2.12: Whole Types reporting most and least comfort with various job characteristics¹⁵

Job characteristic	Most comfort	Least comfort
A job which involves you in a series of distinct projects	1. ESTJ 2. ENTJ 3. ENFJ 4. INFP	1. INTP 2. ISTP 3. ENTP 4. ESTP
A job with a lot of variety, some of it unexpected	1. ESFP 2. INFP 3. ESTP 4. ISFP	1. INFJ 2. ISFJ 3. ISTJ 4. INTP
A job where you would expect to report to the same manager from day to day	1. ESFJ 2. ISTJ 3. ESFP 4. ISFJ	1. INFP 2. ENTJ 3. INTP 4. ENFP
A job in which more or less the same things happen every day	1. ISFJ 2. ESFJ 3. ISTP 4. ESTJ	1. ENTP 2. ENTJ 3. INFP 4. INTP
A job which places lots of demands on you, sometimes requiring you to work long hours to reach deadlines or achieve goals	1. ENTJ 2. ENTP 3. ENFP 4. INTJ	1. INFJ 2. ISFP 3. ISTP 4. ISFJ
A job where you would report to a number of different people depending on the task at hand	1. ESFP 2. INFP 3. ESTP 4. ISFP	1. INFJ 2. ISFJ 3. ISTJ 4. INTP

There are some interesting patterns that emerge from these data, some of which are discussed below.

For those questions that relate to consistency ('a job where you would expect to report to the same manager from day to day', and where

37

³⁰ Reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.

'more or less the same things happen every day') the top four Types are all Sensing Types and mostly SJ Types who would be predicted to prefer specificity, clarity and consistency. The four Types reporting least comfort in these areas are all N Types and mostly NP Types, the opposite of SJ.

'A job with lots of variety, some of it unexpected' seems to be particularly attractive to Perceiving Types, particularly SFPs. Myers called SPs adaptable realists and described them as 'seeking new experiences in the present moment[...]They adapt to situations as they arise.' Those least comfortable with a lot of variety are Introverts and mostly IJ Types who like quiet for concentration (I) and an ordered and planned approach (J). In combination, these characteristics are likely to lead to a dislike of the unexpected and a preference for concentrating on one thing at a time.

'A job which places lots of demands on you, sometimes requiring you to work long hours to reach deadlines or achieve goals' is perceived as most comfortable for iNtuition and mostly ENT Types. It is seen as least comfortable by the four IF Types. Myers described the action-oriented Thinking Types (ETs) as "active and energetic. They like to make things happen..." and this relates well to the question above. The reflective harmonisers (IFs) are "quiet and caring. They have concern for deep and enduring values, as well as for people" (Myers and McCaulley, 1985) and may see a highly demanding job as detracting from other important aspects of their lives and people they value.

'A job where you would report to a number of different people depending on the task at hand' is most comfortable for Perceiving Types, particularly FP and SP Types. FPs are '... adaptable, affiliative harmony seekers who are concerned with the human aspects of problems.' SPs, as described above, seek new experiences and adapt to situations as they arise. Together, these descriptions reflect closely the approach of those who might be comfortable reporting to different people.

Finally, 'a job that involves you in a number of distinct projects' is perceived as least comfortable to the four TP Types. These Types introvert their Thinking and often work privately to analyse and understand the world. It is not clear why this Type combination reports particular discomfort with this kind of work, although they may resist having others structure their work or dictate the boundaries between one project and the next.

Correlations with other instruments

Correlations between the MBTI Step I questionnaire and other psychometric instruments provide another way of establishing construct validity.

Correlations of MBTI continuous scores with the FIRO-B® instrument³¹

The FIRO-B instrument explores individuals' expressed and wanted behaviours in three areas of interpersonal need: Inclusion, Control and Affection.

FIRO-B Inclusion relates to the level of personal interaction, sociability and contact initiated by an individual (Expressed Inclusion) and the degree to which an individual wants to be given a sense of belonging and inclusion (Wanted Inclusion).

It was predicted that Extraversion would relate to Wanted Inclusion, but particularly strongly to Expressed Inclusion.

FIRO-B Control relates to the degree to which individuals like to take on responsibility, make decisions and assume leadership of others (Expressed Control) and the degree to which they want or will tolerate control from others (Wanted Control).

It was predicted that relationships would be found between Expressed Control and Thinking.

FIRO-B Affection reflects the level of warmth and friendliness an individual shows to others (Expressed Affection) and the amount of warmth they want to receive from others (Wanted Affection).

Extraversion and, in particular, Feeling should relate to both these scales.

The UK general population sample completed the FIRO-B questionnaire alongside the MBTI questionnaire. The correlations between the two instruments are shown in Table 2.13.

Table 2.13: Correlations of MBTI Step I continuous scores with FIRO-B scales $(n=1,512)^{16}$

	E-I	S-N	T–F	J-P
Expressed Inclusion	-0.41***	0.12**	0.10***	0.02
Wanted Inclusion	-0.38***	0.19**	0.10***	0.07**
Expressed Control	-0.13***	0.18**	-0.24***	0.00
Wanted Control	0.07**	0.02	0.18***	-0.02
Expressed Affection	-0.36***	0.10**	0.25***	0.00
Wanted Affection	-0.27***	0.03	0.23***	0.00

Significant at: **p<0.01, ***p<0.001.

All the predictions were supported by the data. Note that positive correlations indicate relationships with I, N, F or P and negative correlations indicate relationships with E, S, T or J.

³¹ Reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.

Correlations of MBTI continuous scores with an Adjective Check List³²

The UK general population sample completed a 164-item Adjective Check List (ACL). Each person was asked to indicate whether each of the adjectives reflected them or not. Predictions were made about which words would be endorsed by which Types. The detailed predictions are shown in Appendix 2, together with correlations between each of the ACL words and the MBTI Step I continuous scores. Table 2.14 summarises the data by showing which of the adjectives were the strongest correlates of the MBTI dimensions.

Table 2.14: Strongest correlates of MBTI dimensions with ACL items³³

Correlates of I		ersion strong		-0.20			
Talkative:	-0.56	Outgoing:	-0.50	Sociable:	-0.39	Spontaneous:	-0.32
Confident:	-0.31	Adventurous:	-0.30	Pleasure-seeking:	-0.28	Enthusiastic:	-0.27
Witty:	-0.26	Assertive:	-0.25	Outspoken:	-0.25	Energetic:	-0.24
Sharp-witted:	-0.24	Ambitious:	-0.23	Headstrong:	-0.23	Has wide interests:	-0.22
Active:	-0.21						
Correlates of	ntrove	ersion exceed	ing 0.2	0			
Quiet:	0.49	Reserved:	0.44	Shy:	0.43	Withdrawn:	0.36
Retiring:	0.34	Timid:	0.31	Gloomy:	0.24	Inhibited:	0.24
Unambitious:	0.22	Meek:	0.22	Serious:	0.20	Cold:	0.20
Correlates of	Sensin	g greater tha	n –0.20)			
Traditional:	-0.36	Conventional:	-0.34	Conscientious:	-0.26	Conforming:	-0.26
Conservative:	-0.24	Steady:	-0.21				
Correlates of	ntuitio	on exceeding	0.20				
Unconventional:	0.31	Imaginative:	0.27	Rebellious:	0.26	Adventurous:	0.24
Artistic:	0.23	Individualistic:	0.23	Creative:	0.22	Has wide interests:	0.22
Insightful:	0.21						
Correlates of	Γhinkir	ng greater tha	an –0.2	0			
Hard:	-0.28	Unemotional:	-0.23	Fault finding:	-0.22	Cold:	-0.21
Ruthless:	-0.20	Aggressive:	-0.20				
Correlates of .	Judgin	g greater tha	n –0.20)			
Plans things	-0.39	Organised:	-0.38	Methodical:	-0.29	Traditional:	-0.27
carefully:							
Precise:	-0.26	Thorough:	-0.25	Conservative:	-0.23		
Correlates of I	Perceiv	/ing exceedin	g 0.20				
Rebellious:	0.28	Reckless:	0.23	Impulsive:	0.22	Adventurous:	0.21

40

 $^{^{32}}$ Reproduced from European English MBTI Step I Manual Supplement (1998) with kind permission of CPP Inc.

³³ When interpreting the content of this table, please note that the adjectives listed for each preference are those that correlated strongest with that preference, in a positive direction. The negative values for the correlations with E, S, T and J are a reflection of the fact that continuous scores were used in the calculations. Reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.

Of the correlates shown in the table, only two' were not predicted beforehand: Extraversion – 'sharp-witted', and Intuition – 'adventurous'. The most highly endorsed adjectives make a great deal of sense from a Type perspective.

For some Type preferences (notably Introversion and Thinking), many of the strongest correlates are negative in tone. Remember these data relate to how individuals see themselves rather than how others see them. Also, it is possible that Introverted Types and Thinking Types, being different from the UK cultural norms, may view some of their own characteristics in a harsh light. These data are comparable with US data reported in the *MBTI Manual* (Myers and McCaully, 1985) in table 11.12 (pp. 212–14).

Finally, the ACL data were analysed by whole Type to see which adjectives were most often endorsed. Table 2.15 shows the 15 most highly endorsed adjectives for each Type. Adjectives not in bold appear in ten or more of the different Type lists, so those in bold are the ones that are more distinctive to that Type. The numbers at the bottom of each cell show how many frequently endorsed adjectives were selected by each Type. Focusing particularly on the adjectives that are in bold is a quick way to appreciate the 'unique' ways each of the 16 Types describe themselves.

Table 2.15: Adjectives most often endorsed by each of the 16 MBTI Types.³⁴

ISTJ	ISFJ	INFJ	INTJ
Reliable	Kind	Appreciative	Appreciative
Kind	Reliable	Cautious	Bright
Reasonable	Thoughtful	Considerate	Considerate
Fair-minded	Reasonable	Creative	Determined
Mature	Considerate	Curious	Gentle
Steady	Sympathetic	Dependable	Logical
Thoughtful	Cooperative	Down-to-earth	Persistent
Considerate	Gentle	Fair-minded	Reasonable
Cooperative	Steady	Gentle	Stable
Stable	Fair-minded Mature	Kind Peaceable	Steady Thorough
Dependable Down-to-earth	Understanding	Steady	Cooperative
Conscientious	Conscientious	Understanding	Thoughtful
Appreciative	Sensitive	Bright	Dependable
Understanding	Appreciative	Conscientious	Alert
(11)	(9)	(7)	(6)
ISTP	ISFP	INFP	INTP
Fair-minded	Kind	Kind	Fair-minded
Kind	Fair-minded	Bright	Kind
Cooperative	Reasonable	Fair-minded	Bright
Reasonable	Considerate	Appreciative	Intelligent
Down-to-earth	Steady	Forgiving	Reliable
Reliable	Understanding	Gentle	Dependable
Steady Considerate	Easy-going Down-to-earth	Reliable Sensitive	Reasonable Appreciative
Dependable	Cooperative	Thoughtful	Individualistic
Independent	Dependable	Cooperative	Logical
Thoughtful	Thoughtful	Easy-going	Stable
Curious	Gentle	Reasonable	Understanding
Stable	Reliable	Sympathetic	Complex
Understanding	Sympathetic	Understanding	Cooperative
Easy-going	Appreciative	Curious	Curious
(10)	(11)	(8)	(8)
ESTP	ESFP	ENFP	ENTP
Kind	Down-to-earth	Considerate	Talkative
Considerate	Kind	Cooperative	Curious
Easy-going	Reasonable	Kind Reasonable	Fair-minded
Cooperative Down-to-earth	Understanding Considerate	Appreciative	Thoughtful Considerate
Enthusiastic	Reliable	Fair-minded	Enthusiastic
Reliable	Sympathetic	Sensitive	Intelligent
Shows initiative	Easy-going	Sympathetic	Reasonable
Thoughtful	Fair-minded	Thoughtful	Self-sufficient
Dependable	Sensitive	Imaginative	Bright
Sociable	Sociable	Reliable	Determined
Determined	Thoughtful	Sociable	Outgoing
Reasonable	Forgiving	Understanding	Sociable
Fair-minded	Enthusiastic	Dependable	Cooperative
Alert	Appreciative	Down-to-earth	Reliable
(9)	(9)	(11)	(6)
ESTJ	ESFJ	ENFJ	ENTJ
Reliable	Reliable	Conscientious	Conscientious
Reasonable	Kind	Down-to-earth	Intelligent
Cooperative Considerate	Reasonable Considerate	Enthusiastic Intelligent	Kind Reliable
Kind	Understanding	Outgoing	Bright
Dependable	Appreciative	Reasonable	Fair-minded
Fair-minded	Cooperative	Sympathetic	Thoughtful
Down-to-earth	Sympathetic	Thoughtful	Independent
Steady	Thoughtful	Reliable	Active
Intelligent	Sociable	Sensitive	Logical
Sociable	Easy-going	Understanding	Shows initiative
Thoughtful	Down-to-earth	Appreciative	Curious
Appreciative	Steady	Bright	Dependable
Practical	Fair-minded	Cooperative	Down-to-earth
Stable	Dependable	Curious	Enthusiastic
(10)	(11)	(7)	(6)

 $^{^{34}}$ Reproduced from European English MBTI Step I Manual Supplement (1998) with kind permission of CPP Inc.

Several adjectives appear on the top 15 list of ten or more Types. These are shown below (with the number of Types for which each ranks in the top 15 in parentheses):

- Fair-minded (14)
- Thoughtful (14)
- Reasonable (14)
- Reliable (14)
- Cooperative (13)
- Kind (13)
- Considerate (12)
- Appreciative (12)
- Dependable (11)
- Down-to-earth (11)
- Understanding (11).

These words are highly socially desirable self-descriptors in the UK, and it is interesting to speculate whether they reflect some part of UK cultural values.

Relationship between the MBTI Step I instrument and the 16PF5 questionnaire

A group of almost 700 people completed the 16PF (5th edition) questionnaire and the MBTI Step I questionnaire as part of outplacement interviewing and counselling between 1997 and 2003. This allowed an exploration of the relationship between 16PF scores and MBTI Type dichotomies in a large UK sample, and an exploration of the relationship between the 16PF instrument and whole Type. Further details of the personality traits measured by the 16PF instrument are given in Appendix 3.

Extraversion-Introversion

Table 2.16 shows the mean sten³⁵ score for Extraverts and for Introverts on each of the 16PF scales, the difference between the means and the statistical significance of this difference (based on an independent-samples t-test).

³⁵ Sten scores are standardised scores which are computed from raw scores by comparing the raw scores against a norm table. Stens are based on a 10-point scale with a mean of 5.5 and a standard deviation of 2. Scores that fall further from the mean (in either direction) are considered more extreme. The more extreme a score is in a particular direction (or pole), the more likely that the descriptors for the scale's pole will apply for that score and that the trait will be apparent in the individual's behaviour.

Table 2.16: 16PF differences between Extraverts and Introverts

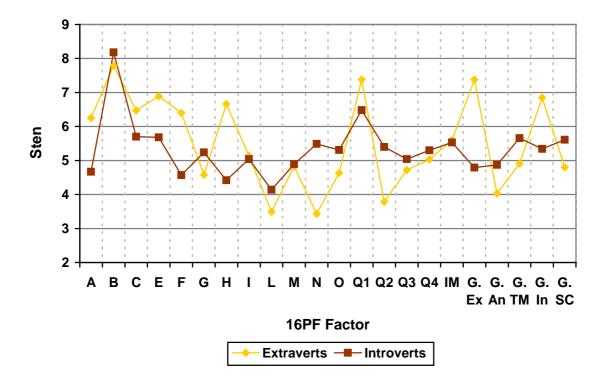
16PF Factor	Mean sten score		Sten	Sig.
	Extraverts	Introverts	difference ³⁶	(t-test)
A (Warmth)	6.25	4.67	1.58	***
B (Reasoning)	7.79	8.18	-0.39	*
C (Emotional Stability)	6.47	5.70	0.77	***
E (Dominance)	6.89	5.68	1.20	***
F (Liveliness)	6.40	4.57	1.84	***
G (Rule-Consciousness)	4.58	5.24	-0.66	***
H (Social Boldness)	6.66	4.42	2.24	***
I (Sensitivity)	5.14	5.04	0.10	
L (Vigilance)	3.49	4.14	-0.65	**
M (Abstractness)	4.83	4.89	-0.06	
N (Privateness)	3.43	5.49	-2.06	***
O (Apprehension)	4.63	5.31	-0.68	***
Q1 (Openness to Change)	7.38	6.48	0.90	***
Q2 (Self-Reliance)	3.79	5.40	-1.61	***
Q3 (Perfectionism)	4.72	5.04	-0.32	
Q4 (Tension)	5.03	5.30	-0.27	
IM (Impression Management)	5.60	5.53	0.07	
Global Extraversion	7.38	4.79	2.58	***
Global Anxiety	4.03	4.87	-0.83	***
Global Tough-Mindedness	4.91	5.66	-0.75	***
Global Independence	6.85	5.34	1.51	***
Global Self-Control	4.80	5.61	-0.81	***

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.

In part because of the large sample size, most scales show a statistically significant difference between Extraverts and Introverts. Some of these differences are in practice, however, quite small, and for practical purposes it is useful to take a difference of one sten as a meaningful criterion.

On this basis, Extraverts tend to be more:

- Socially bold (H)
- Lively (F)
- Warm (A)
- Dominant (E)
- and higher on Global Extraversion and Global Independence.


³⁶ Sten score difference between Extraverts and Introverts. Negative values indicate a higher score for Introverts.

Introverts tend to be more:

- Private (N)
- Self-reliant (Q2).

These differences are illustrated graphically in Figure 2.9.

Figure 2.9: Mean sten scores of Extraverts and Introverts on the 16PF scales³⁷

³⁷ See Table 2.16 for abbreviations of factor names. G., global; Ex, Extraversion; An, Anxiety; TM, Tough-Mindedness; In, Introversion; SC, Self-Control.

Sensing-iNtuition

Table 2.17 shows the mean sten score for Sensing Types and for Intuitive Types on each of the 16PF scales, the difference between the means and the statistical significance of this difference (based on an independent-samples t-test).

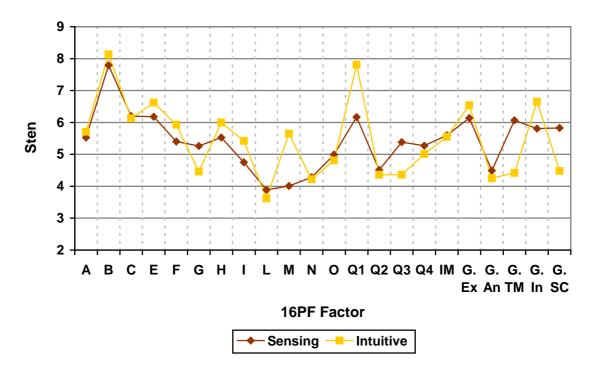
Table 2.17: 16PF differences between Sensing and iNtuition Types

16PF Factor	Mean s	ten score	Sten	Sig.
	Sensing	intuition	difference ³⁸	(t-test)
A (Warmth)	5.53	5.71	-0.18	
B (Reasoning)	7.79	8.14	-0.35	**
C (Emotional Stability)	6.20	6.13	0.06	
E (Dominance)	6.18	6.62	-0.44	*
F (Liveliness)	5.40	5.93	-0.53	**
G (Rule-Consciousness)	5.26	4.46	0.80	***
H (Social Boldness)	5.53	6.00	-0.47	***
I (Sensitivity)	4.75	5.42	-0.66	***
L (Vigilance)	3.89	3.62	0.27	
M (Abstractness)	4.01	5.65	-1.64	***
N (Privateness)	4.28	4.22	0.07	
O (Apprehension)	4.99	4.81	0.18	
Q1 (Openness to Change)	6.17	7.81	-1.65	***
Q2 (Self-Reliance)	4.51	4.36	0.15	
Q3 (Perfectionism)	5.38	4.36	1.03	***
Q4 (Tension)	5.27	5.01	0.26	
IM (Impression Management)	5.60	5.55	0.05	
Global Extraversion	6.14	6.54	-0.40	**
Global Anxiety	4.49	4.25	0.24	
Global Tough-mindedness	6.07	4.42	1.66	***
Global Independence	5.81	6.65	-0.84	***
Global Self-control	5.83	4.48	1.35	***

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.

Looking at those scales which show a difference of at least one sten, those with a preference for Sensing tend to be higher on:

- Perfectionism (Q3)
- Global Tough-Mindedness
- Global Self-Control.


³⁸ Sten score difference between Sensing and Intuition. Negative values indicate a higher score for Intuitives.

Those with a preference for Intuition tend to be higher on:

- Openness to Change (Q1)
- Abstractness (M).

These differences are illustrated graphically in Figure 2.10.

Figure 2.10: Mean sten scores of Sensing and iNtuition Types on the 16PF scales (see Table 21.6 and footnote to Figure 2.9 for abbreviations)

Thinking-Feeling

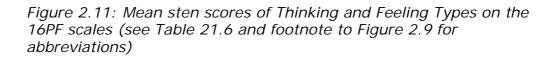
Table 2.18 shows the mean sten score for Thinking and for Feeling Types on each of the 16PF scales, the difference between the means and the statistical significance of this difference (based on an independent-samples t-test).

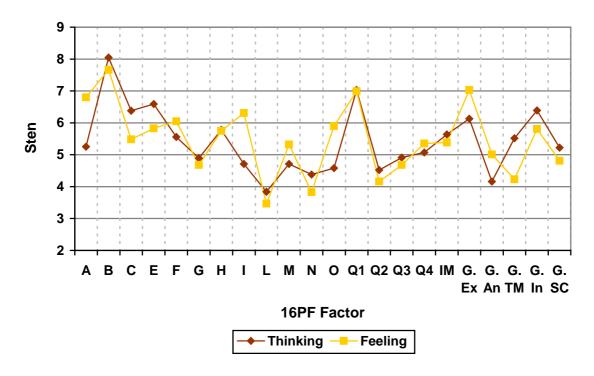
Table 2.18: 16PF differences between Thinking and Feeling

16PF Factor	Mean sten score		Sten	Sig.
	Thinking	Feeling	difference ³⁹	(t-test)
A (Warmth)	5.25	6.80	-1.55	***
B (Reasoning)	8.05	7.66	0.39	
C (Emotional Stability)	6.38	5.48	0.90	***
E (Dominance)	6.59	5.83	0.77	***
F (Liveliness)	5.56	6.05	-0.50	*
G (Rule-Consciousness)	4.89	4.68	0.21	
H (Social Boldness)	5.78	5.75	0.02	
I (Sensitivity)	4.71	6.31	-1.59	***
L (Vigilance)	3.84	3.47	0.37	*
M (Abstractness)	4.71	5.32	-0.61	***
N (Privateness)	4.38	3.83	0.56	**
O (Apprehension)	4.58	5.90	-1.31	***
Q1 (Openness to Change)	7.03	6.99	0.04	
Q2 (Self-Reliance)	4.52	4.16	0.36	
Q3 (Perfectionism)	4.91	4.68	0.23	
Q4 (Tension)	5.07	5.35	-0.28	
IM (Impression Management)	5.64	5.38	0.27	
Global Extraversion	6.13	7.03	-0.90	***
Global Anxiety	4.16	5.01	-0.85	***
Global Tough-Mindedness	5.52	4.23	1.28	***
Global Independence	6.39	5.81	0.58	***
Global Self-Control	5.22	4.81	0.41	**

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.

Looking at those scales which show a difference of at least one sten, Thinking Types tend to be higher on:


Global Tough-Mindedness.


Feeling Types tend to be more:

- Sensitive (I)
- Warm (A)
- Apprehensive (O).

These differences are illustrated graphically in Figure 2.11.

³⁹ Sten difference between Thinking and Feeling. Negative values indicate a higher score for Feeling.

Judging-Perceiving

Table 2.19 shows the mean sten score for Judging and for Perceiving Types on each of the 16PF scales, the difference between the means and the statistical significance of this difference (based on an independent-samples t-test).

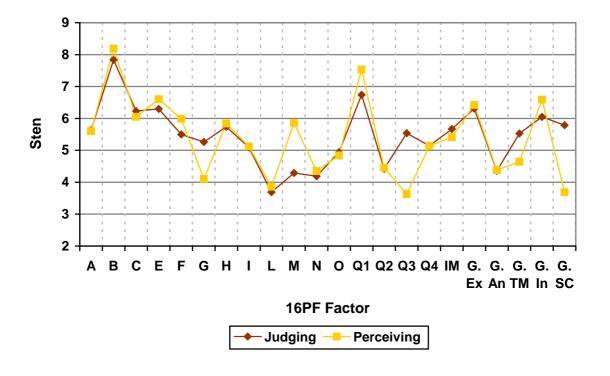
Table 2.19: 16PF differences between Judging and Perceiving

16PF Factor	Mean sten score		Sten	Sig.
	Judging	Perceiving	difference ⁴⁰	(t-test)
A (Warmth)	5.63	5.60	0.03	
B (Reasoning)	7.84	8.19	-0.35	
C (Emotional Stability)	6.23	6.05	0.18	
E (Dominance)	6.30	6.60	-0.30	
F (Liveliness)	5.50	5.99	-0.49	*
G (Rule-Consciousness)	5.26	4.10	1.16	***
H (Social Boldness)	5.74	5.84	-0.10	
I (Sensitivity)	5.09	5.12	-0.03	
L (Vigilance)	3.69	3.86	-0.17	
M (Abstractness)	4.29	5.86	-1.57	***
N (Privateness)	4.19	4.35	-0.16	
O (Apprehension)	4.94	4.84	0.10	
Q1 (Openness to Change)	6.74	7.53	-0.79	***
Q2 (Self-Reliance)	4.42	4.45	-0.03	
Q3 (Perfectionism)	5.54	3.63	1.91	***
Q4 (Tension)	5.14	5.13	0.02	
IM (Impression Management)	5.67	5.41	0.26	
Global Extraversion	6.31	6.42	-0.11	
Global Anxiety	4.36	4.38	-0.02	
Global Tough-Mindedness	5.53	4.64	0.89	***
Global Independence	6.05	6.59	-0.54	***
Global Self-control	5.79	3.96	1.83	***

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.

Looking at scales with a difference of at least one sten, Judging Types tend to be more:

- Perfectionist (Q3)
- Rule-Conscious (G)
- and higher on Global Self-control.


Perceiving Types tend to be more:

Abstract (M).

 $^{^{40}}$ Sten difference between Judging and Perceiving. Negative values indicate a higher score for Perceiving.

These differences are illustrated graphically in Figure 2.12.

Figure 2.12: Mean sten scores of Judging and Perceiving Types on the 16PF scales (see Table 21.6 and footnote to Figure 2.9 for abbreviations)

Another way to look at the data is in terms of correlations between MBTI continuous scores and 16PF scores. These correlations are shown in Table 2.20.

Table 2.20: Correlation of MBTI continuous scores with the 16PF scores

16PF Factor	E-I	S-N	T–F	J–P
A (Warmth)	-0.50 ***	0.12 *	0.46 ***	0.10
B (Reasoning)	-0.04	0.09	-0.02	-0.02
C (Emotional Stability)	-0.18 ***	-0.04	-0.23 * * *	-0.17 **
E (Dominance)	-0.31 ***	0.05	-0.25 ***	-0.04
F (Liveliness)	-0.59 ***	0.15 **	0.16 **	0.15 **
G (Rule-Consciousness)	0.18 ***	-0.30 ***	-0.10	-0.37 ***
H (Social Boldness)	-0.80 ***	0.16 **	0.05	0.03
I (Sensitivity)	-0.09	0.27 ***	0.47 ***	0.12 *
L (Vigilance)	0.19 ***	-0.16 * *	-0.16 * *	-0.03
M (Abstractness)	0.02	0.48 ***	0.12 *	0.43 ***
N (Privateness)	0.56 ***	-0.07	-0.26 ***	-0.08
O (Apprehension)	0.14 *	-0.06	0.34 ***	0.01
Q1 (Openness to Change)	-0.28 * * *	0.57 ***	0.06	0.33 * * *
Q2 (Self-Reliance)	0.47 ***	-0.12 *	-0.25 ***	-0.06
Q3 (Perfectionism)	0.07	-0.26 ***	-0.15 **	-0.58 * * *
Q4 (Tension)	0.13 *	-0.03	0.00	-0.04
IM (Impression Management)	-0.02	-0.06	0.04	-0.17 **
Global Extraversion	-0.73 ***	0.18 ***	0.37 ***	0.12 *
Global Anxiety	0.26 ***	-0.10	0.15 **	0.01
Global Tough-Mindedness	0.27 ***	-0.57 ***	-0.37 ***	-0.37 ***
Global Independence	-0.49 ***	0.29 ***	-0.17 ***	0.17 ***
Global Self-control	0.28 ***	-0.45 ***	-0.18 ***	-0.63 ***

Significant at: p<0.05, p<0.01, p<0.001.

The highest correlates of each Type dichotomy were therefore as follows:

E-I:	H (-0.80), Global Extraversion (-0.73), F (-0.59), N (0.56), A (0.50), Global Independence (-0.49), Q2 (0.47)
S-N:	Global Tough-Mindedness (-0.57), Q1 (0.57), M (0.48), Global Self-Control (-0.45)
T-F:	I (0.47), A (0.46)
J–P:	Global Self-Control (-0.63), Q3 (-0.58), M (0.43)

Unsurprisingly, there is a very similar picture here to that shown by the t-tests in Tables 2.16–2.19.

The relationship between whole Type and the 16PF instrument

Table 2.21 shows a number of hypotheses which were generated by MBTI and 16PF experts about the relationship of whole Type or combinations of letters to the 16PF instrument, and the extent to which the data support these.

Table 2.21: Hypotheses regarding whole Type and the 16PF instrument

Hypot	hesis	Results	Supported?
ENFJ:	High on A and I	High on both	Yes
ENTJ:	Higher on E than non E – – J	Higher than most, but E – P higher	No
ENTP:	F+, G-, H+, I-, M+, Q1+, Q3-	I midzone, otherwise all	Yes
ESFJ:	High on A and I	High on both	Yes
	Higher on E than -SFP	False	No
	A+, E+, F+, I+, L-, M-, Q2-	E low, otherwise all	Yes
ESFP:	Higher on Q1 than -S-J	Yes	Yes
	Higher on Q3 than -N-P	Yes (ESFP mid; –N–P very low)	Yes
ESTJ:	Higher on E than non E – – J	True except for ENTP	_
	Higher on F than ISTJ	True	Yes
ESTP:	Higher on Q1 than -S-J	False	No
	Higher on Q3 than –N–P	True	Yes
INFP:	Low to mid on A but high on I	True	Yes
	High on Q2	False	No
INTJ:	Higher on M than ENTJ	True	Yes
ISFJ:	Higher on E than -SFP	False	No
	Higher on Q3 than ESFJ or ESTJ	True	Yes
ISFP:	Low to mid on A but high on I	False. Mid on both	No
	Higher on Q1 than -S-J	False	No
	Higher on Q3 than -N-P	True	Yes
	A+, G-, I+, L-, M-, Q1-, Q3-	Mixed	_
ISTJ:	Higher on Q3 than ESTJ or ESFJ	False	No
	A-, E+, F-, I-, M-, Q1-, Q2+, Q3+	All true except E	Yes
ISTP:	Higher on Q1 than -S-J	True except for ESTJ	Yes
	Higher on Q3 than -N-P	True	Yes

Of 25 hypotheses, 15 (60%) were supported, two (8%) had mixed evidence and eight (32%) were rejected.

Table 2.22 shows the four 'highest scoring' and the four 'lowest scoring' Types for each 16PF factor, with the mean sten score for each Type. Looking at this table, it is remarkable how neatly Type combinations relate to many of the 16PF factors. In the first line of the table, for example, the four Types with the highest score on Factor A (Warmth) all have a preference for Extraversion and Feeling and the four Types with the lowest score all have a preference for Introversion and Thinking.

Table 2.22: Whole Type differences on the 16PF instrument

16PF Factor	Four	Four		Four hig	ghest n	neans
	'highest'	'lowest'		Four lov	west m	eans
	Types	Types				
A (Warmth)	ESFP (7.8)	ISTP (4.0)	ISTJ	ISFJ	INFJ	INTJ
	ESFJ (7.3)	INTP (4.1)	ISTP	ISFP	INFP	INTP
	ENFP (7.2)	ISTJ (4.2)	ESTP	ESFP	ENFP	ENTP
	ENFJ (7.0)	INTJ (4.6)	ESTJ	ESFJ	ENFJ	ENTJ
B (Reasoning)	INTP (8.9)	ESFJ (7.2)	ISTJ	ISFJ	INFJ	INTJ
	INFJ (8.7)	ENFJ (7.3)	ISTP	ISFP	INFP	INTP
	INTJ (8.5)	ESTJ (7.6)	ESTP	ESFP	ENFP	ENTP
	ISTP (8.4)	ISFJ (7.7)	ESTJ	ESFJ	ENFJ	ENTJ
C (Emotional	FCTD (7.3)	ICED (4.7)	ICTI	ICTI	INFJ	INITI
C (Emotional Stability)	ESTP (7.2) ESTJ (6.9)	ISFP (4.7) ISFJ (4.8)	ISTJ ISTP	ISFJ ISFP	INFP	INTJ INTP
Stability)	ESTJ (6.9) ENTJ (6.6)	INFJ (5.0)	ESTP	ESFP	ENFP	ENTP
	ENTP (6.4)	INFP (5.3)	ESTJ	ESFJ	ENFJ	ENTJ
	LIVIF (0.4)	INIF (5.5)	LSIJ	L313	LIVIS	LIVIS
E (Dominance)	ENTP (7.3)	ISFP (4.8)	ISTJ	ISFJ	INFJ	INTJ
, ,	ENTJ (7.3)	INFJ (5.1)	ISTP	ISFP	INFP	INTP
	ESTP (7.1)	ISFJ (5.1)	ESTP	ESFP	ENFP	ENTP
	ESTJ (6.9)	INFP (5.7)	ESTJ	ESFJ	ENFJ	ENTJ
	, ,	, ,				
F (Liveliness)	ESFP (7.0)	ISTJ (4.1)	ISTJ	ISFJ	INFJ	INTJ
	ENFP (6.8)	ISFP (4.1)	ISTP	ISFP	INFP	INTP
	ENTP (6.6)	INTJ (4.5)	ESTP	ESFP	ENFP	ENTP
	ENFJ (6.5)	INFJ (4.9)	ESTJ	ESFJ	ENFJ	ENTJ
	ESFJ (6.5)					
G (Rule-	ISFJ (6.0)	ENFP (3.6)	ISTJ	ISFJ	INFJ	INTJ
Consciousness)	INFJ (6.0)	ENTP (4.0)	ISTP	ISFP	INFP	INTP
	ISTJ (5.8)	INTP (4.0)	ESTP	ESFP	ENFP	ENTP
	INTJ (5.4)	ESFP (4.2	ESTJ	ESFJ	ENFJ	ENTJ
	11113 (3.4)	L31F (4.2	LSIJ	LSIJ	LIVIS	LIVIS
H (Social	ENTJ (6.8)	ISFP (3.9)	ISTJ	ISFJ	INFJ	INTJ
Boldness)	ESTJ (6.8)	ISFJ (4.1)	ISTP	ISFP	INFP	INTP
	ENFP (6.7)	ISTJ (4.1)	ESTP	ESFP	ENFP	ENTP
	ENFJ (6.7)	ISTP (4.5)	ESTJ	ESFJ	ENFJ	ENTJ
L (Canality the)	INIEL (7.0)	FCTD (2.0)	ICT	ICE	INITI	INIT
I (Sensitivity)	INFJ (7.2)	ESTP (3.9)	ISTJ	ISFJ	INFJ	INTJ
	ENFP (6.5)	ESTJ (4.2)	ISTP	ISFP	INFP	INTP
	ESFJ (6.4)	ISTP (4.5)	ESTP	ESFP	ENFP	ENTP
	INFP (6.4)	ISTJ (4.6)	ESTJ	ESFJ	ENFJ	ENTJ

Chapter 2: English (European)

L (Vigilance)	ISTP	ENFJ	ISTJ	ISFJ	INFJ	INTJ
	(4.8)	(2.6)				
	ISTJ (4.5)	ENTJ (3.4)	ISTP	ISFP	INFP	INTP
	INFJ (4.4)	ENFP (3.4)	ESTP	ESFP	ENFP	ENTP
	ISFP (4.1)	ESFP (3.4)	ESTJ	ESFJ	ENFJ	ENTJ
M (Abstractness)	ENFP (6.9)	ESTJ (3.5)	ISTJ	ISFJ	INFJ	INTJ
	INFP (6.9)	ESFJ (3.8)	ISTP	ISFP	INFP	INTP
	ENTP (6.1)	ISTJ (3.9)	ESTP	ESFP	ENFP	ENTP
	ISFP (6.0)	ISFJ (4.2)	ESTJ	ESFJ	ENFJ	ENTJ
			1071	1051		
N (Privateness)	ISTP (6.2)	ENFJ (2.4)	ISTJ	ISFJ	INFJ	INTJ
	INTP (6.1)	ESFP (2.8)	ISTP	ISFP	INFP	INTP
	ISTJ (5.4)	ESFJ (3.0)	ESTP	ESFP	ENFP	ENTP
	ISFJ (5.3)	ESTP (3.3)	ESTJ	ESFJ	ENFJ	ENTJ
			LOTI	1051	INIET	INITI
O (Apprehension)	INFJ (7.4)	ESTP (3.8)	ISTJ	ISFJ	INFJ	INTJ
	ISFP (6.4)	ESTJ (4.1)	ISTP	ISFP	INFP	INTP
	ISFJ (6.1)	ENTP (4.4)	ESTP	ESFP	ENFP	ENTP
	ESFP (6.1)	ENTJ (4.4)	ESTJ	ESFJ	ENFJ	ENTJ
O1 (Ononnoss to	ENITD (0.2)	ICTI (E E)	ISTJ	ISFJ	INFJ	INTJ
Q1 (Openness to	ENTP (8.2)	ISTJ (5.5)		ISFP	INFP	
Change)	ENFP (8.2) ENFJ (8.0)	ISFP (5.7) ISFJ (6.0)	ISTP			INTP
	ENTJ (8.0) ENTJ (7.9)	ESFJ (6.0)	ESTP ESTJ	ESFP ESFJ	ENFP ENFJ	ENTP ENTJ
	ENIJ (7.9)	E3FJ (0.1)	LSIJ	LSIJ	LINIJ	LIVIJ
Q2 (Self-Reliance)	INTP (5.7)	ESFJ (3.2)	ISTJ	ISFJ	INFJ	INTJ
Q2 (Sell-Reliance)				ISFP		
	ISFP (5.7)	ESTJ (3.7) ENFJ (3.7)	ISTP		INFP	INTP
	ISTJ (5.6) INFJ (5.6)		ESTP ESTJ	ESFP ESFJ	ENFP ENFJ	ENTP ENTJ
	1145 (5.6)	ENTP (3.8)	ESIJ	ESFJ	LINE	EINIJ
Q3 (Perfectionism)	ISFJ (6.0)	ISFP (2.9)	ISTJ	ISFJ	INFJ	INTJ
25 (1.51.1551151115111)	ESFJ (5.8)	ENTP (3.2)	ISTP	ISFP	INFP	INTP
	ESTJ (5.8)	ENFP (3.5)	ESTP	ESFP	ENFP	ENTP
	ISTJ (5.7)	INFP (3.6)	ESTJ	ESFJ	ENFJ	ENTJ
	, ,	, ,				
Q4 (Tension)	ESFJ (5.9)	ENFP (4.5)	ISTJ	ISFJ	INFJ	INTJ
	ISFP (5.8)	INTJ (4.9)	ISTP	ISFP	INFP	INTP
	INFP (5.6)	ENTP (4.9)	ESTP	ESFP	ENFP	ENTP
	ISFJ (5.6)	ESTJ (4.9)	ESTJ	ESFJ	ENFJ	ENTJ
IM (Impression	INTJ (5.9)	ISFJ (4.7)	ISTJ	ISFJ	INFJ	INTJ
Management)	ESTJ (5.9)	ISFP (4.9)	ISTP	ISFP	INFP	INTP
	ISTJ (5.8)	INFP (4.9)	ESTP	ESFP	ENFP	ENTP
	ENFJ (5.7)	ISTP (5.2)	ESTJ	ESFJ	ENFJ	ENTJ
	ENFP (5.7)					

Global	ENFJ	ISTJ	ISTJ	ISFJ	INFJ	INTJ
Extraversion	(8.0)	(4.4)				
	ESFJ (8.0)	ISTP (4.5)	ISTP	ISFP	INFP	INTP
	ESFP (7.8)	INTP (4.6)	ESTP	ESFP	ENFP	ENTP
	ENFP (7.8)	ISFP (4.7)	ESTJ	ESFJ	ENFJ	ENTJ
Global	INFJ (6.1)	ESTP (3.4)	ISTJ	ISFJ	INFJ	INTJ
Anxiety	ISFP (6.0)	ESTJ (3.7)	ISTP	ISFP	INFP	INTP
	ISFJ (5.5)	ENTJ (3.9)	ESTP	ESFP	ENFP	ENTP
	ESFJ (5.2)	ENTP (4.0)	ESTJ	ESFJ	ENFJ	ENTJ
Global	ISTJ (6.8)	ENFP (3.0)	ISTJ	ISFJ	INFJ	INTJ
Tough-Mindedness	ESTP (6.2)	INFP (3.6)	ISTP	ISFP	INFP	INTP
	ESTJ (6.2)	ENFJ (3.7)	ESTP	ESFP	ENFP	ENTP
	ISTP (5.9)	INFJ (3.8)	ESTJ	ESFJ	ENFJ	ENTJ
Global	ENTP (7.5)	ISFP (4.4)	ISTJ	ISFJ	INFJ	INTJ
Independence	ENTJ (7.1)	ISFJ (4.6)	ISTP	ISFP	INFP	INTP
	ESTP (6.8)	INFJ (5.0)	ESTP	ESFP	ENFP	ENTP
	ESTJ (6.7)	ISTJ (5.0)	ESTJ	ESFJ	ENFJ	ENTJ
Global	ISTJ (6.5)	ENFP (3.2)	ISTJ	ISFJ	INFJ	INTJ
Self-Control	ISFJ (6.4)	ENTP (3.5)	ISTP	ISFP	INFP	INTP
	ESTJ (6.0)	INFP (3.9)	ESTP	ESFP	ENFP	ENTP
	INTJ (5.9)	INTP (4.3)	ESTJ	ESFJ	ENFJ	ENTJ

Note: these results should be treated with caution, as the sample sizes for some Types – notably INFJ and ISFP – are small.

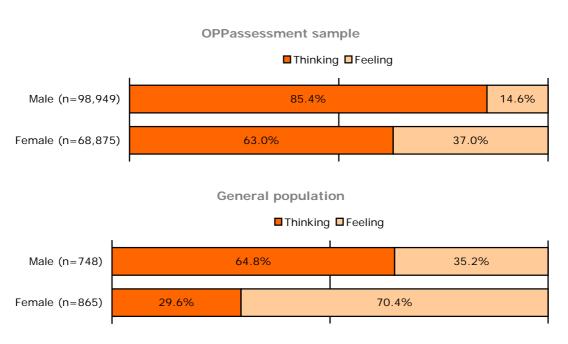
In summary therefore, comparing Type dichotomies to the 16PF factors, it can be seen that:

- Extraverts are significantly more Socially Bold (H), Lively (F), Warm (A), Dominant (E), Extravert and Independent than Introverts.
 Introverts are more Private (N) and Self-Reliant (Q2).
- Sensing Types are more Perfectionist (Q3), Tough-Minded and Self-Controlled than iNtuition Types. iNtuition Types are more Open to Change (Q1) and Abstract (M).
- Thinking Types are more Tough-Minded than Feeling Types, who are on average more Sensitive (I), Warm (A) and Apprehensive (O).
- Judging Types are more Perfectionist (Q3), Rule-Conscious (G) and Self-Controlled than Perceiving Types. Perceiving Types are more Abstract (M).
- Similar results are found when MBTI continuous scores are correlated with 16PF scores. The pattern of the results is broadly similar to that shown from earlier data.

In addition, a number of hypotheses were made about the relationship of whole Type to the 16PF factors, with the data shown to support the majority (60%) of these. The neat fit in terms of how whole Type relates to the 16PF factors supports the views of MBTI practitioners that it is useful to look at whole Type, rather than just at the four Type dichotomies separately.

In summary, there is good evidence for the validity of the European English MBTI Step I instrument. Specifically:

- There is a high level of agreement between best-fit and reported Type.
- Respondents of different types have shown preferences for different types of organisational cultures and jobs that are consistent with what we would expect from Type theory.
- Scores on the MBTI Step I dimensions show clear relationships in the expected direction with scores on other instruments that measure related psychological constructs.


Group differences in Type

The large OPPassessment sample was used to explore group differences in Type. Two other samples (the general UK population and outplacement interviewing and counselling) also contained gender and/or age data that could be analysed, and these data were also incorporated. The relationship of Type to each of these factors is described below.

Gender

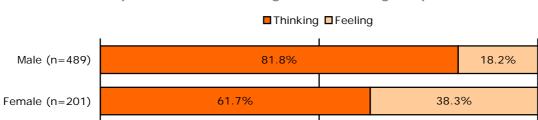
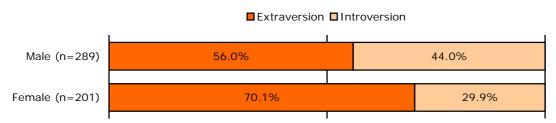

Across countries, most groups who complete the MBTI questionnaire show a significant gender difference on the Thinking–Feeling dimension, and this is the case for the three groups analysed here, as shown in Figure 2.13: ⁴¹

Figure 2.13: Gender differences on the T–F dimension

58

 $^{^{41}}$ OPPassessment sample: $\chi^2 = 11,168.47;$ significant at p<0.001. General population sample: $\chi^2 = 180.50;$ significant at p<0.01. Outplacement interviewing and counselling sample: $\chi^2 = 31.53;$ significant at p<0.001. Data for the UK general population sample reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.



Outplacement interviewing and counselling sample

Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women. This effect has been found many times with many different language versions of the MBTI instrument in a number of different cultures. Although the gender difference is consistent, the proportion of both women and men with a preference for Thinking is higher in professional and managerial groups than in the UK population in general.

For the outplacement interviewing and counselling sample, gender differences were also found on the Extraversion–Introversion dimension. 42 This is shown in Figure 2.14:

Figure 2.14: Gender differences on the E-I dimension

Outplacement interviewing and counselling sample

For this group, Introversion preferences are over-represented amongst men and Extraversion preferences are over-represented amongst women.

Age

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for

 $^{^{42}\}chi^2$ = 11.84; significant at p<0.001.

Introversion, for Sensing versus iNtuition, for Thinking versus Feeling and for Judging versus Perceiving. The two samples for which age data were analysed (OPPassessment and outplacement) showed a statistically significant and meaningful relationship between age and only one of the dimensions, ⁴³ as shown in Table 2.23. The mean age of people with a preference for Introversion was between one and two years higher than of those with a preference for Extraversion. Although statistically, significant, the difference is still small in real terms. Differences for the other three dimensions were in the region of one year or less.

Table 2.23: Significant mean age differences

	Mean age (year	Difference	Sig.	
	Extraversion	Introversion		
OPPassessment sample	36.71	38.10	1.39	***
Outplacement sample	42.46	44.23	1.77	**

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.

Ethnic origin

Research conducted on the UK general population sample during the development of the MBTI Step I questionnaire was confined to looking at differences between the majority group and minorities as a general category. ⁴⁴ This was because there were insufficient data from individual ethnic groups to allow separate analyses.

The only dimension showing significant ethnic differences in this sample was Judging–Perceiving: ⁴⁵ 82% of the minority group were found to have a preference for Judging, compared with 57% of the white majority group.

The more recent collection of a large amount of data from OPPassessment has allowed a further, more detailed, exploration of ethnic differences. In the figures that follow, ethnic origin categories used by OPPassessment have been re-ordered according to the percentage of E, S, T or J (categories described as 'Other' have been omitted).

The key finding is that differences between different minority groups are just as prevalent as those between the majority group (White-British) and the minority groups. This is an observation that can only be made on the basis of a very large sample size such as is provided here.

⁴³ Based on the results from independent-samples t-tests.

⁴⁴ Reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.

 $^{^{45}}$ χ^2 =11.21; significant at p<0.001. Reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.

At the individual dimension level, few clear patterns emerge other than that distributions do vary across people of different ethnic origins by up to about 12% on each dimension. Perhaps the most notable finding is that people of Black-African origin are more likely to have preferences for Introversion, Sensing, Thinking and Judging than other groups. People of White-Irish origin, on the other hand, are more likely to have preferences for Extraversion, Feeling and Perceiving than other groups.

■ Extraversion **■** Introversion White-Irish (n=7,546)30.1% 30.8% Asian-Pakistani (n=675) 69.2% Asian-Bangladeshi (n=220) 31.4% 68.6% 31.4% Asian-Indian (n=3,878)White-British (n=75,095) 66.9% 33.1% Black-Caribbean (n=910) 35.9% 64.1% 36.0% Chinese (n=2,681)64.09 Black-African (n=1,372) 57.8% 42.2% TOTAL (n=167,824) 32.9%

Figure 2.15: Extraversion–Introversion⁴⁶ and ethnic origin

NB: The total above includes ethnic origin groups not shown, and is therefore greater than the sum of the ethnic origin groups in the figure.

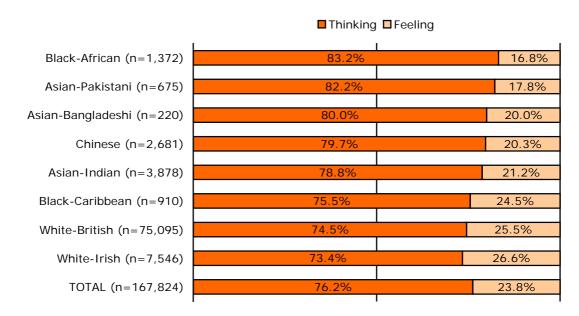
61

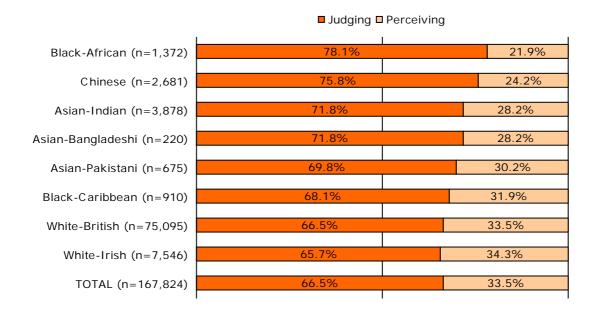
 $^{^{46}}$ χ^2 =294.04; significant at p<0.001.

■ Sensing ■ Intuition Black-African (n=1,372) 44.0% White-Irish (n=7,546) 44.8% Black-Caribbean (n=910) 45.1% 54.9% White-British (n=75,095) 47.2% Asian-Indian (n=3,878) 47.2% 52.8% Chinese (n=2,681)47.7% 47.9% Asian-Pakistani (n=675) Asian-Bangladeshi (n=220) 48.6% 51.4% TOTAL (n=167,824) 47.4% 52.6%

Figure 2.16: Sensing-iNtuition⁴⁷ and ethnic origin

NB: The total above includes ethnic origin groups not shown, and is therefore greater than the sum of the ethnic origin groups in the figure.




Figure 2.17: Thinking–Feeling⁴⁸ and ethnic origin

NB: The total above includes ethnic origin groups not shown, and is therefore greater than the sum of the ethnic origin groups in the figure.

Figure 2.18: Judging-Perceiving⁴⁹ and ethnic origin

62

 $^{^{47}}_{48} \; \chi^2 {=}\, 100.33;$ significant at p<0.001. $^{48} \; \chi^2 {=}\, 450.84;$ significant at p<0.001.

NB: The total above includes ethnic origin groups not shown, and is therefore greater than the sum of the ethnic origin groups in the figure.

Occupational level

Previous research in other countries has demonstrated that individuals in higher-level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower-level jobs (Quenk, Hammer and Majors, 2004).

This is reflected in the relationship of the Sensing–iNtuition and Thinking–Feeling dimensions with occupational level in the OPPassessment sample.

The data suggest that individuals at the top level are most likely to have a preference for iNtuition, followed by senior executives and those in upper middle management. The proportions of people with preferences for Intuition were lowest amongst those from middle management down to employee level, as shown in Figure 2.19.

 $^{^{49} \}chi^2 = 446.55$; significant at p<0.001.

■ Sensing ■ Intuition 39.0% 61.0% Top level (n=2,820) 43.2% 56.8% Senior executive (n=11,727)Upper middle management (n=22,419) 49.9% 50.1% Middle management (n=32,642)55.3% 44.7% 58.4% 41.6% First level management/supervisor (n=23,704) Employee (n=30,406) 54.3% 45.7%

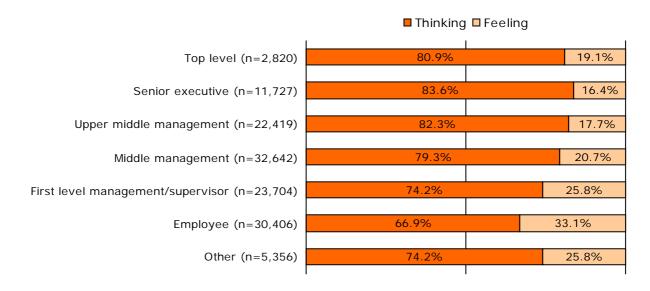

55.5%

Figure 2.19: Sensing-iNtuition⁵⁰ and occupational level (OPPassessment data)

It was also found that those with preferences for Thinking are slightly under-represented at employee level and (to some extent) first-level management/supervisor level, as shown in Figure 2.20. All other levels contained a similar (higher) proportion of Thinking Types.

Figure 2.20: Thinking–Feeling⁵¹ and occupational level (OPPassessment data)

Other (n=5,356)

 $^{^{50}}$ $\chi^2 = 1287.59$; significant at p<0.001. 51 $\chi^2 = 2552.45$; significant at p<0.001.

Education

Specific educational qualifications were not collected for the OPPassessment sample; however, the age at which individuals left full-time education was. Those who left full-time education at an older age were significantly more likely to have preferences for Intuition, Thinking and/or Perceiving. 52 However, although statistically significant, the differences were all less than one year in real terms.

Work area

Previous research into MBTI Type suggests that an individual's Type influences their choice of career (Hammer, 1998), and indeed the data in this supplement show that there is a statistically significant relationship between three of the dimensions and work area, the exception being the Judging–Perceiving dimension. In the figures that follow, categories have been re-ordered according to the percentage of E, S or T (work areas with fewer than 100 respondents have been omitted as have undefined work areas described as 'Other').

⁵² Based on an independent-samples t-test; all significant at p<0.001.

Figure 2.21: Extraversion–Introversion⁵³ and work area

■ Extraversion **□** Introversion Sales, customer service (n=13,950) 20.9% 79.1% Leisure, personal service (n=564) 73.6% 26.4% HR, training, guidance (n=11,946) 72.4% 27.6% Business services (n=13,113) 69.7% 30.3% 30.7% Land, sea or air transport (n=655) 69.3% Skilled operative (n=919) 68.3% 31.7% Health, social services, etc (n=5,489) 66.9% 33.1% Education (n=2,702) 65.8% 34.2% Military, police, prison, fire (n=2,430) 64.6% 35.4% Finance (n=24,630)64.4% 35.6% 63.9% Admin or secretarial (n=5,278) 36.1% Research and development (n=3,269) 62.2% 37.8% Science, engineering (n=10,219) 61.4% 38.6% IT (n=11,086) 60.7% 39.3%

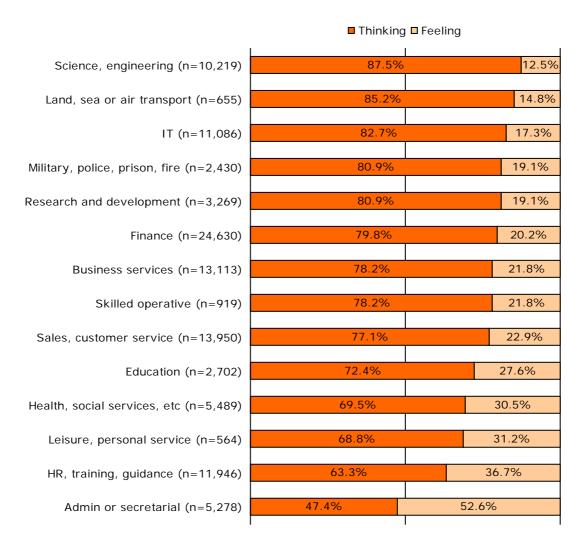

 $^{^{53}}$ $\chi^2 = 1802.20$; significant at p<0.001.

Figure 2.22: Sensing-iNtuition⁵⁴ and work area

■ Sensing ■ Intuition Admin or secretarial (n=5,278) 64.5% 35.5% Skilled operative (n=919) 62.0% 38.0% Military, police, prison, fire (n=2,430) 61.6% 38.4% 40.2% Land, sea or air transport (n=655) 59.8% 58.0% 42.0% Science, engineering (n=10,219) Finance (n=24,630) 57.5% 42.5% Sales, customer service (n=13,950) 53.1% 46.9% 52.2% 47.8% IT (n=11,086)HR, training, guidance (n=11,946) 49.4% 50.6% 48.5% 51.5% Business services (n=13,113) 53.0% Health, social services, etc (n=5,489) 47.0% Research and development (n=3,269) 45.2% 54.8% 45.0% 55.0% Leisure, personal service (n=564) 60.0% Education (n=2,702)40.0%

 $^{^{54}}$ χ^2 =1375.62; significant at p<0.001.

Figure 2.23: Thinking–Feeling⁵⁵ and work area

 $^{^{55}}$ $\chi^2 = 4993.01$; significant at p<0.001.

Figure 2.24: Judging-Perceiving⁵⁶ and work area

■ Judging ■ Perceiving Admin or secretarial (n=5,278) 72.4% 27.6% 28.5% Land, sea or air transport (n=655) 71.5% Science, engineering (n=10,219) 71.4% 28.6% 29.1% Military, police, prison, fire (n=2,430) 70.9% 68.7% 31.3% Education (n=2,702) Skilled operative (n=919) 68.1% 31.9% Finance (n=24,630)66.6% 33.4% 66.4% 33.6% Health, social services, etc (n=5,489) Sales, customer service (n=13,950) 66.1% 33.9% 64.8% 35.2% IT (n=11,086)35.4% 64.6% Business services (n=13,113) HR, training, guidance (n=11,946) 63.2% 36.8% 37.3% 62.7% Research and development (n=3,269)62.4% 37.6% Leisure, personal service (n=564)

 $^{^{56} \}chi^2 = 356.44$; significant at p<0.001.

Nationality

Information on nationality was available for the OPPassessment group. Seventy per cent of the group were British. Although a number of other European nationalities were represented in fairly large numbers, it would normally be expected for these people to complete the instrument in their own first language. Therefore national differences have not been explored using the European English version of the instrument. The exception to this is for people who described themselves as Irish. These formed approximately 5% of the group.

Type distributions for the people from the OPPassessment sample who described themselves as British and Irish are compared in Tables 2.24–2.26. Analysis suggested that there were significant differences between the Type distributions. However, these levels of significance were a result the very large sample sizes and, in real terms, the Type distributions are very similar.

Table 2.24: Type table for British OPPassessment respondents (reported Type, n=88,394)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=10,898	n=2,691	n=1,287	n=4,965	E	59,291	67.1%**
12.3%	3.0%	1.5%	5.6%	1	29,103	32.9%**
SSR=0.90	SSR=0.24**	SSR=0.85	SSR=3.99**			
ISTP	ISFP	INFP	INTP	S	46,410	52.5%**
		 	 	N	41,984	47.5%**
n=2,731	n=721	n=1,447	n=4,363			
3.1%	0.8%	1.6%	4.9%	T	65,762	74.4%**
SSR=0.48**	SSR=0.13**	SSR=0.51**	SSR=2.02**	F	22,632	25.6%**
ESTP	ESFP	ENFP	ENTP] '	22,032	25.070
n=4,433	n=1,753	n=4,681	n=9,341	J	58,924	66.7%**
5.0%	2.0%	5.3%	10.6%	P	29,470	33.3%**
SSR=0.86	SSR=0.23**	SSR=0.84	SSR=3.84**	ļ ·	27,170	00.070
ESTJ	ESFJ	ENFJ	ENTJ			
n=17,275	n=5,908	n=4,144	n=11,756			
19.5%	6.7%	4.7%	13.3%			
SSR=1.88**	SSR=0.53**	SSR=1.70**	SSR=4.53**			

^{*}Difference significant at p<0.05, based on chi-square results.

^{**}Difference significant at p<0.01, based on chi-square results.

Table 2.25: Type table for Irish OPPassessment respondents (reported Type, n=7,710)

				7		
ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=880	n=253	n=85	n=367	E	5,396	70.0%**
11.4%	3.3%	1.1%	4.8%	1	2,314	30.0%**
SSR=0.83**	SSR=0.26**	SSR=0.64*	SSR=3.38**			
				S	4,414	57.3%**
ISTP	ISFP	INFP	INTP	N	3,296	42.7%**
n=239	n=68	n=114	n=308	'	3,270	42.770
3.1%	0.9%	1.5%	4.0%	T	5,619	72.9%**
SSR=0.48**	SSR=0.14**	SSR=0.46**	SSR=1.63**	Ė	2,091	27.1%**
ESTP	ESFP	ENFP	ENTP] ·	2,071	27.170
n=483	n=196	n=393	n=725	J	5,184	67.2%**
6.3%	2.5%	5.1%	9.4%	P	2,526	32.8%**
SSR=1.08	SSR=0.29**	SSR=0.81*	SSR=3.41**		_,	
ESTJ	ESFJ	ENFJ	ENTJ			
n=1,665	n=630	n=352	n=952			
21.6%	8.2%	4.6%	12.3%			
SSR=2.08**	SSR=0.65**	SSR=1.66**	SSR=4.20**			

^{*}Difference significant at p<0.05, based on chi-square results.

Table 2.26: Summary of differences by nationality

	E	I	S	N	Т	F	J	Р
British	67%	33%	52%	48%	74%	26%	67%	33%
(n=88,394)								
Irish (n=7,710)	70%	30%	57%	43%	73%	27%	67%	33%

Employment status

Employment status information was available for the OPPassessment sample. Analysis revealed statistically significant differences across the groups on two dimensions, namely Thinking—Feeling and Judging—Perceiving. Amongst those in employment, self-employed people were considerably more likely to have a preference for Intuition, and slightly more likely to have a preference for Perceiving, than those who described themselves as working full-time or part-time. Those who worked full-time were more likely to have a preference for Thinking than those who were self-employed who, in turn, were more likely to have a preference for Thinking than those who worked part-time. The Thinking—Feeling pattern is likely to be a gender effect; 87% of part-time workers were female, compared with 40% of the total group and 38% of full-time workers.

^{**}Difference significant at p<0.01, based on chi-square results.

Appendix 1: Sample descriptions

Sample 1: UK general population sample 57

This sample consists of 1,634 individuals, specifically sampled by the Office of National Statistics (ONS) to be representative of the UK general population. The group completed a version of the MBTI questionnaire in 1996 during the initial development of the European Step I questionnaire.

The data were collected as part of the ONS's monthly 'Omnibus' survey, whereby each month approximately 2,000 adults aged 16 years or older are interviewed. A sample of 100 postal sectors is selected each month, stratified by region, by proportion of households renting from local authorities, and by socio-economic group. Within each sector, 30 addresses are selected randomly and a letter is sent to each address requesting their cooperation. Within each household, one person is selected at random, and interviewed. The Omnibus sampling method is thus random.

In total, 54% of the respondents were female and 46% were male. Also, 96% described their ethnicity as white, and 4% described themselves as belonging to a minority group.

The age range was as follows:

Age (years)	Percentage
16–29	23.7%
30–49	49.7%
50–65	26.6%

A broad range of occupational levels was represented, with the largest single group being employee level (44%), as shown below:

Occupational level	Percentage
Top level	0.9%
Senior executive	3.0%
Upper middle management	6.5%
Middle management	20.0%
First-level management/supervisor	9.7%
Employee	43.7%
Other	16.2%

72

⁵⁷ Reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.

The age at which individuals left full-time education was as follows:

Occupational level (years)	Percentage
<15	24.3%
16–18	50.5%
19–21	9.7%
22–25	8.8%
26+	2.7%
Still in education	4.0%

The majority of the group were in full-time or part-time employment:

Employment status	Percentage
Full-time	44.2%
Part-time	17.7%
Self-employed	7.4%
Unemployed (seeking work)	7.8%
Unemployed (not seeking work)	5.3%
Retired	8.3%
Homemaker	9.4%

Sample 2: Data from OPPassessment (representative European English-speaking professional and managerial sample)

This sample consists of 167,824 individuals who completed the MBTI Step I questionnaire in European English via the OPPassessment system between March 2003 and June 2008. Of these respondents, 59% were male and 41% were female. Age ranged from 20 to 90 years, with a mean of 37 and median of 36.

Nationality was given by 85% of the respondents. Of these, 62% were British and 5% were Irish. Many other nationalities were represented, but each formed less than 3% of the total group.

Nationality	Percentage
British	62.2%
Irish	5.4%
Other	32.4%

Ethnic origin was provided by 76% of respondents. Of these, 59% were White-British. Many other ethnic origins were represented.

Ethnic origin	Percentage
White-British	58.8%
White-Irish	5.9%
Asian-Indian	3.0%
Chinese	2.1%
Black-African	1.1%
Black-Caribbean	0.7%
Asian-Pakistani	0.5%
Asian-Bangladeshi	0.2%
Other	27.6%

The majority of the group were in full-time employment:

Employment status	Percentage
Full-time	93.5%
Part-time	4.0%
Self-employed	1.8%
Unemployed	0.6%
Retired	0.1%
Homemaker	0.1%

The majority of the group were of managerial level or above, with the largest single groups being middle management (25%) and employee level (24%):

Occupational level	Percentage
Top level	2.2%
Senior executive	9.1%
Upper middle management	17.4%
Middle management	25.3%
First level	18.4%
management/supervisor	
Employee	23.6%
Other	4.1%

And a range of work areas were represented:

Work area (job type)	Percentage
Finance	18.9%
Sales, customer service	10.7%
Business services	10.1%
HR, training, guidance	9.2%
IT	8.5%
Science, engineering	7.8%
Health, social services, etc	4.2%
Admin or secretarial	4.0%
Research and development	2.5%
Education	2.1%
Military, police, prison, fire	1.9%
Skilled operative	0.7%
Land, sea or air transport	0.5%
Leisure, personal service	0.4%
Unskilled operative	0.1%
Other public sector	5.4%
Other private sector	4.7%
Other	8.4%

Sample 3: Management development programme participants

The sample consisted of 4,575 UK participants on management development programmes at Ashridge Business School, run between 2000 and 2003. Of this group, 77% were male and 23% female. Ages ranged from 21 to 67 years.

Sample 4: Outplacement interviewing and counselling sample

The sample consisted of 695 individuals who completed the MBTI Step I questionnaire (or knew their MBTI reported Type) and the 16PF (5th edition) questionnaire as part of outplacement interviewing and counselling between September 1997 and June 2003. Of this group, 71% were male and 29% female. Age was available for 451 individuals (65%) and ranged from 21 to 61 years with a mean of 43.

Appendix 2: Full analysis of Adjective Check List data⁵⁸

Table 2A1.1 shows predicted relationships and actual correlations between MBTI continuous scores and all 164 items of an adjective checklist (ACL) administered to the UK population sample.

To aid quick review of the table, the 'Relationship' column has been added to show the direction of the stronger relationships that were found (where correlations are 0.1 or above and where the result is significant at the p<0.01 level).

Relationships predicted by the author of the original research prior to the analysis of the data are shown in the column headed 'Prediction'. Those predictions that are supported by the data at the p<0.01 level are shown in bold in this column of the table. As can be seen, most of the predictions were supported by the data, thus providing further evidence of the validity of the Step I instrument.

It should be remembered that most of the correlations in this table are weak, eg a correlation of 0.2 accounts for only 4% of the variance in the data and a correlation of 0.1 for 1% of the variance. Therefore, the findings should be interpreted tentatively (eg "Extraverts tend to describe themselves as 'active' "). The data should not be used as the basis for generalisations such as "All Extraverts describe themselves as 'active' " or less accurate still "All Extraverts are 'active' ".

76

⁵⁸ Reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.

Table 2A1.1: Correlations of UK MBTI Step I continuous scores with ACL items $(n=1,634)^{59}$

ACL word	Prediction	E-I	S-N	T–F	J–P	Relationship
absent-minded	_N_P	0.09**	0.07**	0.10**	0.16**	FP
active	E	-0.21**	0.07**	-0.03	0.01	E
adventurous	EP	-0.30**	0.24**	-0.08**	0.21**	EN_P
aggressive	T_	-0.09**	0.07**	-0.20**	0.09**	T_
alert	E	-0.16**	-0.01	-0.05	-0.06*	E
aloof	I_T_	0.19**	0.03	-0.14**	0.06*	I_T_
ambitious	E_T_	-0.23**	0.12**	-0.17**	0.08**	ENT_
anxious	I_F_	0.14**	-0.04	0.11**	-0.10**	I_FJ
apathetic		0.06*	0.02	0.01	0.08**	
appreciative	F_	-0.05*	-0.02	0.11**	-0.07**	F_
argumentative	E_T_	-0.10**	0.12**	-0.15**	0.11**	ENTP
arrogant	T_	-0.03	0.15**	-0.17**	0.11**	_NTP
artistic	_N	-0.06*	0.23**	0.07**	0.02	_N
assertive	E_T_	-0.25**	0.10**	-0.16**	-0.00	ENT_
awkward		0.06*	0.08**	-0.11**	0.12**	TP
bright	_N	-0.10**	0.10**	-0.05*	-0.03	EN
calm	I	-0.02	0.00	-0.05	0.01	
careless	_N_P	0.00	0.09**	0.01	0.18**	P
cautious	IS_J	0.15**	-0.16**	0.03	-0.19**	IS_J
changeable	_N_P	0.00	0.03	0.04	0.11**	P
clumsy	_N_P	0.03	0.08**	0.10**	0.10**	FP
cold	I_T_	0.20**	-0.01	-0.21**	0.05*	I_T_
complex	I N	0.10**	0.17**	-0.11**	0.05	INT_
confident	E_T_	-0.31**	0.03	-0.16**	-0.02	E_T_
conforming	_S_J	0.08**	-0.26**	0.04	-0.20**	_S_J
conscientious	_S_J	0.00	-0.05	0.04	-0.16**	J
conservative	_S_J	0.17**	-0.24**	-0.05*	-0.23**	IS_J
considerate	F_	-0.10**	-0.04	0.14**	-0.06*	E_F_
conventional	_S_J	0.04	-0.34**	0.05*	-0.19**	_S_J
cooperative	F_	-0.08**	-0.07**	0.12**	-0.03	F_
creative	_N	-0.13**	0.22**	-0.01	0.01	EN
cultured	_N	-0.11**	0.14**	-0.01	-0.05	EN
curious	_N_P	-0.10**	0.11*	0.02	0.05*	E
defensive		0.09**	-0.05*	-0.01	0.01	
deliberate	_S_ J	0.01	0.01	-0.17**	-0.10**	TJ
dependable	_S_J	-0.04	-0.06*	0.05*	-0.06*	
determined	E J	-0.11**	-0.01	-0.08**	-0.06*	E
dissatisfied	_N	0.12**	0.10**	0.07**	-0.08**	IN
distractible	EN_P	0.03	0.11**	0.06*	0.16**	_N_P
distrustful	T_	0.12**	0.07**	-0.12**	0.02	I_T_
down to earth	_S_ J	-0.11**	-0.11**	0.06*	-0.02	ES
easy-going	F P	-0.13**	-0.10**	0.16**	0.06*	ESF_

⁵⁹ Reproduced from *European English MBTI Step I Manual Supplement* (1998) with kind permission of CPP Inc.

efficient	_STJ	-0.07**	-0.14**	-0.03	-0.19**	_S_J
egotistical	_515	-0.08**	0.16**	-0.14**	-0.07**	S_5 _NT_
energetic	E	-0.24**	0.04	-0.04	-0.03	E
enthusiastic	EN	-0.27**	0.03	0.06*	0.01	E
even-tempered	F_	0.00	-0.05	0.08**	-0.05	<u> </u>
fair-minded	' T	-0.01	-0.03	0.04	-0.03	
fault finding	·_ T	0.06*	-0.01	-0.22**	-0.01	T_
fearless	E_T_	-0.14**	0.05*	-0.13**	0.08**	E_T_
fickle	- '_	0.05*	0.02	-0.01	0.05*	
foresighted		-0.02	0.05*	-0.11**	-0.10**	TJ
forgiving	F_	-0.07**	-0.02	0.18**	0.01	F_
formal	 STJ	0.12**	-0.19**	-0.06*	-0.15**	IS_J
frivolous	EN_P	-0.16**	0.11**	0.04	0.12**	EN_P
fussy	_S_J	0.05*	-0.10**	-0.05*	-0.13**	_S_J
gentle	I_F_	0.03	-0.01	0.22**	-0.03	
gloomy	I	0.07	0.03	-0.07**	0.03	' _ I
hard	T_	0.00	-0.02	-0.28**	0.03	T_
hasty	EP	-0.08**	0.07**	0.05*	0.02	P
headstrong	E_T_	-0.23**	0.07	-0.07**	0.15	EP
imaginative	_N	-0.23 -0.16**	0.07	0.03	0.10	EN
impatient	E_TP	-0.01	0.06*	-0.12**	0.07	T_
impulsive	EN_P	-0.19**	0.14**	0.11**	0.22**	ENFP
independent	I_T_	-0.06*	0.03	-0.12**	0.02	T_
indifferent	·_·_	0.07**	-0.01	-0.05*	0.11**	P
individualistic	_NTP	-0.06*	0.23**	-0.09**	0.08**	 N
industrious	_STJ	0.01	-0.04	-0.12**	-0.16**	TJ
inhibited	I	0.24**	-0.02	-0.01	-0.05*	I
irritable	T_	0.07**	0.04	-0.09**	0.05*	
shows initiative	E	-0.19**	0.06**	-0.07**	0.01	E
insightful		-0.10**	0.21**	-0.04	0.00	EN
intelligent		-0.11**	0.10**	-0.09**	-0.07**	EN
intellectual		-0.07**	0.18**	-0.14**	-0.03	
has wide interests	EN_P	-0.22**	0.22**	-0.03	0.07**	EN
irresponsible		0.01	0.09**	-0.01	0.17**	P
kind	F_	-0.03	-0.04	0.14**	-0.04	 F
lax		0.09**	0.06*	0.01	0.18**	P
lazy		0.07**	0.16**	-0.02	0.18**	 _N_P
leisurely	P	-0.04	-0.01	0.06**	0.15**	P
liberal	_NF_	-0.06*	0.14**	0.04	0.05*	
logical	T_	-0.02	-0.09**	-0.13**	-0.11**	TJ
mature		-0.01	-0.17**	-0.01	-0.15**	
mean		0.07**	0.00	-0.16**	0.00	T_
meek	I_F_	0.22**	-0.10**	0.09**	-0.06*	IS
methodical	_STJ	0.06*	-0.12**	-0.14**	-0.29**	_STJ
negligent		0.03	0.06*	-0.01	0.11**	P
opinionated	E_T_	-0.13**	0.16**	-0.14**	0.08**	ENT_
optimistic	EN	-0.16**	0.03	0.04	0.06*	E
		-				1
organised	_s_J	-0.08**	-0.18**	-0.05	-0.38**	_S_J

ataratira	_	0.50**	0.14**	0.00	0.12**	EN D
outgoing	E	-0.50**	0.14**	0.02	0.13**	EN_P
outspoken	E_T_	-0.25**	0.14**	-0.16**	0.10**	ENTP
painstaking	IS_J	0.11**	-0.09**	-0.07**	-0.17**	IJ
passive	I_F_	0.15**	-0.12**	0.12**	-0.01	ISF_
patient	IS_J	0.04	-0.08**	0.15**	-0.06*	F
peaceable	F_	0.10**	-0.08**	0.14**	-0.08**	I_F_
persevering	_S_ J	0.00	0.00	-0.05	-0.10**	J
persistent	J	-0.09**	-0.01	-0.11**	-0.09**	T_
plans things carefully	J	-0.01	-0.14**	-0.04	-0.39**	_S_J
pleasure seeking	EP	-0.28**	0.11**	0.07**	0.14**	EN_P
polished	E	-0.12**	-0.04	-0.05	-0.13**	EJ
practical	_s	-0.09**	-0.16**	0.01	-0.11**	_S_J
precise	_STJ	-0.01	-0.07**	-0.15**	-0.26**	TJ
quiet	1	0.49**	-0.17**	0.04	-0.11**	IS_J
gives up easily		0.04	-0.01	0.09**	0.09**	
rational		-0.01	-0.03	-0.05	-0.13**	J
scatterbrained	_N_P	0.02	0.07**	0.10**	0.17**	FP
reasonable	T_	-0.04	-0.07**	0.09**	-0.08**	
rebellious	_NTP	-0.15**	0.26**	-0.08**	0.23**	EN_P
reckless	EP	-0.10**	0.18**	0.01	0.22**	EN_P
reflective	1	0.03	0.09**	0.00	-0.06*	
relaxed	P	-0.08**	0.00	0.02	0.09**	
reliable	_s_ı	-0.02	-0.09**	0.05	-0.15**	J
reserved	I	0.44**	-0.16**	-0.01	-0.13**	IS_J
restless	_N_P	0.02	0.14**	-0.07**	0.12**	_N_P
retiring	1	0.34**	-0.12**	0.03	-0.09**	IS
rigid	TJ	0.11*	-0.03	-0.14**	-0.04	I_T_
ruthless	T_	-0.05	0.08**	-0.20**	0.10**	TP
secure	_s_ı	-0.10*	-0.14**	-0.02	-0.13**	ES_J
self-centred		0.01	0.10**	-0.15**	0.04	NT_
self-controlled	J	-0.02	-0.05*	-0.10**	-0.10**	TJ
self-denying		0.14**	-0.01	0.01	-0.07**	I
self-sufficient	I_T_	-0.05	0.05*	-0.14**	0.02	T_
selfish		0.07**	0.08**	-0.12**	0.09**	
sensitive	F_	-0.04	0.03	0.25**	0.00	F_
serious	J	0.20**	-0.07**	-0.13**	-0.15**	I_TJ
sharp-witted		-0.24**	0.15**	-0.10**	0.10**	ENTP
shiftless		0.04	0.06*	-0.06*	0.07**	
shy	I	0.43**	-0.09**	0.08**	-0.05	I
simple		0.10**	-0.04	0.06*	0.00	I
slipshod		0.07**	0.06*	0.01	0.16**	P
sloppy	P	0.08**	0.08**	0.00	0.15**	P
slow	IS	0.14**	0.00	0.03	0.01	I
sociable	E_F_	-0.39**	0.01	0.11**	0.03	E_F_
spontaneous	EN_P	-0.32**	0.15**	0.04	0.17**	EN_P
stable	_s_J	-0.01	-0.13**	-0.03	-0.15**	_S_J
steady	_s_J	0.04	-0.21**	0.02	-0.18**	_S_J

MBTI Step I European Data Supplement

submissive		0.12**	-0.03	0.07**	0.04	I
suspicious	T_	0.12**	0.00	-0.11**	-0.01	I_T_
sympathetic	F_	-0.09**	-0.02	0.27**	-0.04	F_
talkative	E	-0.56**	0.10*	0.12**	0.08**	E_F_
thorough	_s_J	-0.05	-0.08**	-0.07**	-0.25**	J
thoughtful	F_	-0.07**	0.00	0.10**	-0.10**	FJ
thoughtless		0.04	0.04	-0.06**	0.07**	
timid	I_F_	0.31**	-0.08**	0.10**	-0.03	I_F_
tolerant	F P	0.00	-0.07**	0.13**	-0.04	F_
traditional	_s_J	0.10**	-0.36**	0.04	-0.27**	IS_J
unambitious	I_F_	0.22**	-0.12**	0.12**	-0.07**	ISF_
uncomplaining		0.15**	-0.10**	0.09**	-0.01	IS
unconventional	_N_P	-0.02	0.31**	-0.08**	0.18**	_N_P
undependable		0.01	0.03	-0.03	0.04	
understanding	F_	-0.03	-0.03	0.16**	-0.06*	F_
unemotional	T_	0.17**	0.01	-0.25**	0.01	I_T_
unforgiving	T_	0.06**	0.01	-0.13**	0.05	T_
uninhibited	E	-0.18**	0.15**	-0.05	0.11**	EN_P
uninquisitive		0.06*	-0.06**	-0.02	0.03	
unkind		0.04	0.00	-0.08**	0.02	
unscrupulous		-0.01	0.04	-0.02	0.07**	
unworried	Р	-0.05	0.07**	-0.12**	0.09**	T_
weak-willed		0.13**	0.02	0.06*	0.06*	I
withdrawn	1	0.36**	0.00	-0.04	-0.02	I
witty	EN_P	-0.26**	0.14**	-0.03	0.13**	EN_P

Appendix 3: Brief summary of what the 16PF instrument measures

The 16PF instrument is a robust measure of personality traits. It was developed by Raymond Cattell in 1949 and is available in European English and many other languages. The current fifth edition is one of the most validated predictors of human behaviour and is based on over 50 years of research and testing.

The questionnaire assesses an individual's personality against the following 16 Primary Factors:

16PF Primary Factor	Description
A Warmth	Your desire to develop close relationships with others
B Reasoning	The extent to which you can solve numerical and verbal problems
C Emotional Stability	How calmly you respond to life's demands
E Dominance	Your tendency to assert influence and/or control others
F Liveliness	How freely and spontaneously you express yourself
G Rule-Consciousness	How much value you place on externally imposed rules
H Social Boldness	How comfortable you feel in social situations
I Sensitivity	The extent to which emotions and sentiments influence your outlook and judgment
L Vigilance	The extent to which you are cautious of others' motives
M Abstractedness	How much attention you give to abstract rather than concrete observations
N Privateness	How much you like to keep personal information to yourself
O Apprehension	How prone you are to self-criticism
Q1 Openness to Change	The extent to which you enjoy new situations and experiences
Q2 Self-Reliance	How much you enjoy your own company and trust your own judgment
Q3 Perfectionism	Whether you need to rely on structure rather than leaving things to chance
Q4 Tension	How easily situations can cause you frustration

MBTI Step I European Data Supplement

Each of the Primary Factors also contributes to one or more of the five Global Factors. These are:

16PF Global Factor	Description
Extraversion	This is about the extent to which an individual wants to be with or around other people, as opposed to spending time on their own, and the amount of energy they will invest in initiating and maintaining social relationships
Independence	This refers to an individual's style of self- expression and persuasion, and the extent to which they will want to go their own way/take charge of situations as opposed to cooperating and collaborating
Tough-Mindedness	This is about the extent to which an individual will experience the world in concrete, logical, unsentimental terms as opposed to paying attention to emotions, intuition and other, more subjective aspects
Self-Control	This is about how an individual structures and orders their life, the extent to which they control their impulses, their level of self-discipline, and therefore how predictable their behaviour is
Anxiety	This refers to the way that an individual manages the pressures and stresses in their life. It may refer to their general state of mind or reflect what is going on in their life at the time

MBTI[®] Step I[™] instrument

European Data Supplement

Danish

January 2009

Last updated: May 2010

OPP Ltd Elsfield Hall 15–17 Elsfield Way Oxford OX2 8EP UK t: +44 (0)1865 404 500

Contents

Introduction	86
Type distribution	87
OPPassessment data (representative Danish-speaking profession	onal
and managerial sample)	88
MBTI practitioners	89
Media organisation employees	90
Internal consistency reliability	92
Intercorrelations between MBTI dimensions	93
Best-fit validity: the accuracy of the Danish MBTI Step I instrume	nt in
predicting best-fit Type	94
Group differences in Type	96
Gender	96
Age	96
Occupational level	97
Education	100
Work area	100
Nationality	103
Employment status	103
Appendix 1: Sample descriptions	103
Sample 1: Data from OPPassessment (representative Danish-	
speaking professional and managerial sample)	103
Sample 2: MBTI practitioners	105
Sample 3: Media organisation employees	106

© Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner.

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

® MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 $^{\text{TM}}$ Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

® OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. ™ OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Introduction

Data from three different samples were analysed to produce the findings in this chapter. A brief description of each sample is given below. Further details of the samples are provided in Appendix 1.

- A sample of 13,561 individuals who completed the MBTI Step I questionnaire in Danish via the OPPassessment system between 2004 and mid-2008. ⁶⁰ This sample is considered to be representative of the groups of people with whom the Danish MBTI instrument has been and will be used for applications such as management development, coaching, counselling and teambuilding. As such, it is likely to represent a cross-section of the Danish-speaking professional and managerial population.
- A group of 221 MBTI practitioners who took part in a research study to look at the relationship between MBTI reported Type and best-fit Type.
- A group of 183 employees from a media organisation, who took part in a best-fit research study.

The results of the analyses are outlined below.

86

 $^{^{60}}$ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via email and/or completed online.

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. Below are Type tables for the three Danish samples described above.

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group. An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is underrepresented. Asterisks are used to denote whether the over- or underrepresentations are statistically significant, based on the results of chisquare analysis. ⁶¹

Ideally, the type distribution from a large representative sample of the Danish population would be used to calculate SSRs in this data supplement. However, such a sample does not currently exist. In its place, SSRs have been calculated using Type data from the UK general population (Kendall, 1998), which can be justified by the fact that Type distributions for comparable Danish and British groups, such as managers and professionals, are similar. Evidence (eg Hackston and Kendall, 2004; Quenk et al., 2004; Kirby, Kendall and Barger, 2007) does suggest that although Type-related behaviours vary a good deal from country to country and from culture to culture, the frequencies of underlying MBTI Types do not.

-

 $^{^{61}}$ Chi-square analysis (often abbreviated to $\chi^2)$ is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the UK general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each type within a particular sample differs significantly from the proportion of people reporting the same type within the reference group.

OPPassessment data (representative Danish-speaking professional and managerial sample)

Table 3.1: Type table for OPPassessment data (reported Type, n=13,561)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=1,455	n=367	n=83	n=369	E	10,126	74.7%**
10.7%	2.7%	0.6%	2.7%	1	3,435	25.3%**
SSR=0.78**	SSR=0.21**	SSR=0.36**	SSR=1.93**			
ISTP	ISFP	INFP	INTP	S	7,817	57.6%**
n=457	n=109	n=155	n=440	N	5,744	42.4%**
3.4%	0.8%	1.1%	3.2%			
SSR=0.52**	SSR=0.13**	SSR=0.36**	SSR=1.33	T	10,237	75.5%**
ESTP	ESFP	ENFP	ENTP	F	3,324	24.5%**
n=1,072	n=333	n=827	n=1,750	1.	0.440	(0.40(44
7.9%	2.5%	6.1%	12.9%	J	8,418	62.1%**
SSR=1.36**	SSR=0.28**	SSR=0.97	SSR=4.69**	P	5,143	37.9%**
ESTJ	ESFJ	ENFJ	ENTJ			
n=3,073	n=951	n=499	n=1,621			
22.7%	7.0%	3.7%	12.0%			
SSR=2.18**	SSR=0.56**	SSR=1.34	SSR=4.07**			

^{*}Difference significant at p<0.05, based on chi-square results.

The most common single Type preference is ESTJ (23% of the total); this is a common finding with managerial groups in other countries. The SSR results suggest that, in comparison with the UK general population, those with preferences for NT are over-represented and those with preferences for SF are under-represented. Again, this is a common finding with managerial groups.

^{**}Difference significant at p<0.01, based on chi-square results.

MBTI practitioners

Table 3.2: Type table for MBTI practitioners

Reported Type (n=221)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=13	n=3	n=4	n=18	E	156	70.6%**
5.9%	1.4%	1.8%	8.1%	I	65	29.4%**
SSR=0.43**	SSR=0.11**	SSR=1.06	SSR=5.79**			
ISTP	ISFP	INFP	INTP	S	59	26.7%**
n=6	n=0	n=9	n=12	N	162	73.3%**
2.7%	0.0%	4.1%	5.4%			
SSR=0.42*	SSR=0.00**	SSR=1.28	SSR=2.22*	T	138	62.4%**
ESTP	ESFP	ENFP	ENTP	F	83	37.6%**
n=7	n=10	n=40	n=56] .	01	2/ 70/++
3.2%	4.5%	18.1%	25.3%	J	81	36.7%**
SSR=0.54	SSR=0.52*	SSR=2.87**	SSR=9.20**	P	140	63.3%**
ESTJ	ESFJ	ENFJ	ENTJ			
n=15	n=5	n=12	n=11			
6.8%	2.3%	5.4%	5.0%			
SSR=0.65	SSR=0.18**	SSR=1.97*	SSR=1.69			

Best-fit Type (n=221)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=5 2.3% SSR=0.17**	n=4 1.8% SSR=0.14**	n=6 2.7% SSR=1.58	n=13 5.9% SSR=4.18**	E I	163 58	73.8%** 26.2%**
ISTP	ISFP	INFP	INTP	S N	59 162	26.7%** 73.3%**
n=4 1.8% SSR=0.28**	n=1 0.5% SSR=0.07**	n=13 5.9% SSR=1.85*	n=12 5.4%	T	112	50.7%
ESTP	ESFP	ENFP	SSR=2.22* ENTP	F	109	49.3%
n=8 3.6%	n=13 5.9%	n=50 22.6%	n=41 18.6%	J P	79 142	35.7%** 64.3%**
SSR=0.62 ESTJ	SSR=0.68 ESFJ	SSR=3.59** ENFJ	SSR=6.74** ENTJ			
n=13 5.9%	n=11 5.0%	n=11 5.0%	n=16 7.2%			
SSR=0.57*	SSR=0.39**	SSR=1.81	SSR=2.46**			

For both tables above: *Difference significant at p<0.05, based on chi-square results.

Looking at reported Type, the most frequent Type preferences are clearly ENTP (25% of the total), followed by ENFP (18%). Overall, the group tends to have a preference for iNtuition and Extraversion, and to a lesser extent for Perceiving and Thinking.

^{**}Difference significant at p<0.01, based on chi-square results.

In terms of best-fit Type, ENFP (23%) is the most frequently occurring Type preference, followed by ENTP (19%). The general pattern is very similar to that found with reported Type, with the group tending to have a preference for Extraversion and iNtuition, and to a lesser extent for Perceiving and Thinking. A notable difference, however, is that the proportion of Thinking Types is considerably higher when we look at reported Type than when we look at best-fit Type (62% vs 51%).

It is known that people often feel pressure to exhibit more of a Thinking style of behaviour in business settings. This may help to explain why we find a lower proportion of Thinking Types when we look at best-fit Type than when we look at reported Type.

Media organisation employees

Table 3.3: Type table for media organisation employees

Reported Type (n=183)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=8	n=2	n=3	n=5	E	148	80.9%**
4.4%	1.1%	1.6%	2.7%	1	35	19.1%**
SSR=0.32**	SSR=0.09**	SSR=0.96	SSR=1.94			
ISTP	ISFP	INFP	INTP	S	68	37.2%**
n=8	n=2	n=2	n=5	N	115	62.8%**
4.4%	1.1%	1.1%	2.7%			
SSR=0.68	SSR=0.18**	SSR=0.34	SSR=1.12	T	117	63.9%**
ESTP	ESFP	ENFP	ENTP	F	66	36.1%**
n=11	n=2	n=30	n=32	1.	0.1	10 70/ #
6.0%	1.1%	16.4%	17.5%	J	91	49.7%*
SSR=1.03	SSR=0.13**	SSR=2.60**	SSR=6.35**	P	92	50.3%*
ESTJ	ESFJ	ENFJ	ENTJ			
n=23	n=12	n=13	n=25			
12.6%	6.6%	7.1%	13.7%			
SSR=1.21	SSR=0.52*	SSR=2.58**	SSR=4.65**			

Best-fit	Type	(n=183)

ISTJ	ISFJ	INFJ	INTJ	Type	n	%
n=13	n=4	n=6	n=4	E	137	74.9%**
7.1%	2.2%	3.3%	2.2%	1	46	25.1%**
SSR=0.52*	SSR=0.17**	SSR=1.91	SSR=1.55			
ISTP	ISFP	INFP	INTP	S	65	35.5%**
n=7	n=2	n=4	n=6	N	118	64.5%**
3.8%	1.1%	2.2%	3.3%	_	404	== 004 ib
SSR=0.60	SSR=0.18**	SSR=0.69	SSR=1.34	Ţ	101	55.2%*
ESTP	ESFP	ENFP	ENTP	F	82	44.8%*
n=4	n=4	n=36	n=30] ,	00	40.20/*
2.2%	2.2%	19.7%	16.4%	7	90	49.2%*
SSR=0.38*	SSR=0.25**	SSR=3.12**	SSR=5.95**	P	93	50.8%*
ESTJ	ESFJ	ENFJ	ENTJ			
n=18	n=13	n=13	n=19			
9.8%	7.1%	7.1%	10.4%			
SSR=0.95	SSR=0.56*	SSR=2.58**	SSR=3.53**			

For both tables above: *Difference significant at p<0.05, based on chi-square results. **Difference significant at p<0.01, based on chi-square results.

Looking at reported Type, the most frequent Type preferences are ENTP (18% of the total), followed by ENFP (16%). Overall, the group tends to have a very clear preference for Extraversion, and to a lesser extent for Thinking and iNtuition. There is an approximately even distribution of people with preferences for Judging and Perceiving.

In terms of best-fit Type, ENFP (20%) is also the most frequently occurring Type preference, followed by ENTP (16%). The general pattern is very similar to that found with reported Type, with the group tending to have a clear preference for Extraversion, and to a lesser extent for iNtuition and Thinking. A notable difference, however, is that the proportion of Thinking Types is considerably higher when we look at reported Type than when we look at best-fit Type (64% vs 55%).

This is the same as was found with the other group for whom best-fit data were available, adding support to the suggestion that people often feel pressure to exhibit more of a Thinking style of behaviour in business settings.

Internal consistency reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. Internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for the Danish OPPassessment sample are shown in Table 3.4.

Table 3.4: Internal consistency reliability

Dimension	Coefficient alpha
E-I	0.84
S-N	0.82
T–F	0.74
J_P	0.81

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. ⁶² On this basis, all of the dimensions of the questionnaire show good reliability. In addition, the alpha coefficients have been found to be consistent across different age groups and across males and females.

-

⁶² For example, see Nunnally (1978) or Kline (2000).

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire.

The intercorrelations between dimensions amongst the Danish OPPassessment sample are shown in Table 3.5. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores.⁶³

Table 3.5: Intercorrelations between dimensions

	E-I	S-N	T-F	J-P
E-I		-0.22**	-0.14**	-0.10
S-N			0.12**	0.46**
T-F				0.10**
J-P				

^{**}Significant at p<0.01.

Although statistically significant, only very low correlations were found between most of the dimensions. The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving.

⁶³ Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

Best-fit validity: the accuracy of the Danish MBTI Step I instrument in predicting best-fit Type

The purpose of the MBTI instrument is to help individuals to establish their validated or 'best-fit' psychological Type. A key measure of the validity of the instrument is, therefore, how well the results relate to best-fit (validated) Type. These data are useful to practitioners in knowing how typically accurate the reported result is likely to be.

Best-fit data are available for two samples; a sample of MBTI practitioners who took part in a research study to look at the relationship between MBTI reported Type and best-fit Type, and a sample of employees working in a media organisation (half of whom were journalists).

Table 3.6 presents the results of the analysis comparing best-fit with reported Type. The Danish questionnaire performs in a similar way to other language versions for which best-fit data are available, and there is very good evidence for the accuracy of the instrument. In around two-thirds of cases, a respondent's reported Type will match their best-fit Type, and in well over 90% of cases at least three of the four preferences will match.

Table 3.6: Match of reported and best-fit Type

	Danish MBTI practitioners (n=221)		emp	rganisation loyees =183)
Agrees with four letters	56.1%	91.8%	71.0%	95.6%
Agrees with three letters	35.7%	91.070	24.6%	95.076
Agrees with two letters	6.8%		3.8%	
Agrees with one letter	0.9%	8.2%	0.5%	4.4%
Agrees with no letters	0.5%		0.0%	

Dimension	Percentage agreement			
	Danish MBTI	Media organisation		
	practitioners	employees		
	(n=221)	(n=183)		
E-I	91.4%	93.4%		
S-N	90.0%	87.4%		
T–F	75.6%	90.2%		
J_P	89.1%	95.1%		

Further analysis was carried out to investigate the validity and accuracy of the questionnaire. MBTI qualifying training course delegates and MBTI practitioners were asked how confident they felt about their results on each Type dichotomy (on a scale from 1 to 5, where 5 indicated the highest degree of confidence). For every dimension except T–F, approximately two-thirds of the group were confident about their Type. For the T–F dimension the figure was

approximately 10% lower. This corresponds with the findings of the best-fit research, where a high level of agreement was found between reported and best-fit preferences for each of the four dimensions, but with the T–F dimension being lower than the other three. All these figures provide further support for the validity of the MBTI approach. Detailed results are shown in Table 3.7.

Table 3.7: Degree of confidence in results

Degree of confidence	Percentage of group			
	E-I	S-N	T-F	J-P
5 (highest)	41%	41%	26%	43%
4	23%	25%	30%	22%
3	10%	13%	21%	15%
2	14%	11%	14%	9%
1 (lowest)	13%	10%	10%	9%
% at 4 or above	64%	66%	56%	65%

In summary, there is good evidence for the validity of the Danish MBTI Step I instrument. Specifically:

- There is a high level of agreement between best-fit and reported Type, comparable with results for other European language versions.
- Respondents are confident about their results.

Group differences in Type

Across the two samples for which reported Type data were available, various types of demographic information were collected. The relationship of MBTI Type to each of these factors is described below.

Gender

Most groups who take the MBTI questionnaire show a significant gender difference on the Thinking–Feeling dimension, and this is the case for both of the groups in this study, as shown in Figure 3.1.⁶⁴

MBTI practitioners

Thinking	Feeling	
Male (n=87)	73.6%	26.4%
Female (n=134)	55.2%	44.8%
OPPassessment sample		
Thinking	Feeling	
Male (n=7,096)	86.3%	13.7%

63.6%

Figure 3.1: Gender differences on the T–F dimension

When compared with the T–F distribution in the combined sample, Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women (although even amongst females in these groups there are more individuals with a preference for Thinking than for Feeling). This effect has been found many times with many different versions of the instrument in a number of different cultures.

36.4%

Age

Female (n=6,465)

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than

 $^{^{64}}$ MBTI practitioners: $\chi^2 = 7.57;$ significant at p<0.01. OPPassessment sample: $\chi^2 = 945.56;$ significant at p<0.001.

younger people to have preferences for Introversion, Sensing and Judging.

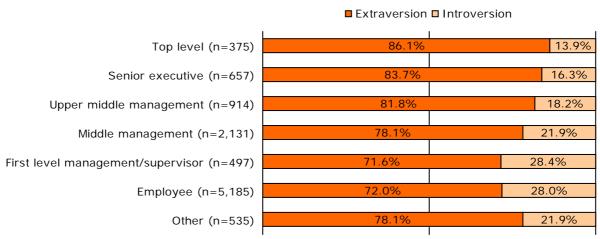
The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, for Sensing versus iNtuition, for Thinking versus Feeling and for Judging versus Perceiving. The OPPassessment sample showed statistically significant relationships between age and two of the dimensions, ⁶⁵ as shown on Table 3.8. The mean age of people with a preference for Introversion was approximately one and a half years higher than of those with a preference for Extraversion. The mean age of those with a preference for iNtuition was just under half a year higher than of those with a preference for Sensing. Although statistically significant, the differences are still small in real terms.

Table 3.8: Significant mean age differences

	Extraversion	Introversion	Difference	Significance
Mean age	40.42	41.84	1.42	***
(years)				

	Sensing	iNtuition	Difference	Significance
Mean age	40.60	40.99	0.39	*
(years)				

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.


Occupational level

Previous research in other countries has demonstrated that individuals in higher level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower level jobs (Quenk, Hammer and Majors, 2004). This is reflected in the relationship of the Sensing–iNtuition and Thinking–Feeling dimensions with occupational level in the OPPassessment sample. A relationship was also found with the Extraversion–Introversion and Judging–Perceiving dimensions.

The data suggest that individuals at the top level are most likely to have a preference for Extraversion, and the proportion of individuals with Extraversion preferences decreases steadily with occupational level down to first-level management and employees, who are similar, as shown in Figure 3.2.

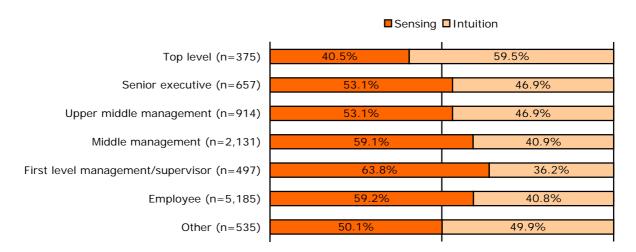

⁶⁵ Independent-samples t-tests: EI significant at p<0.001, SN significant at p<0.05.

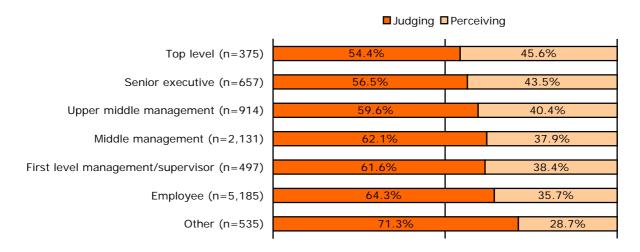
Figure 3.2: Extraversion–Introversion⁶⁶ and occupational level (OPPassessment data)

The data also suggest that individuals at the top level are most likely to have a preference for iNtuition, followed by senior executives and those in upper middle management. The proportions of people with preferences for iNtuition were lowest amongst those from middle management down to employee level, as shown in Figure 3.3.

Figure 3.3: Sensing-iNtuition⁶⁷ and occupational level (OPPassessment data)

It was also found that those with a preference for Thinking are slightly under-represented at employee level, as shown in Figure 3.4. All other occupational levels contained a similar (higher) proportion of Thinking Types.

98


 $^{^{66}}$ $\chi^2 {=}\, 115.66;$ significant at p<0.001. 67 $\chi^2 {=}\, 84.87;$ significant at p<0.001.

■Thinking ■Feeling Top level (n=375) 80.89 19.2% Senior executive (n=657) 15.2% 15.2% Upper middle management (n=914) Middle management (n=2,131) 79 69 20.4% First level management/supervisor (n=497) 15.3% Employee (n=5,185) 29.0% Other (n=535) 28.7%

Figure 3.4: Thinking–Feeling⁶⁸ and occupational level (OPPassessment data)

Finally, the data shown in Figure 3.5 suggest that the proportion of individuals with a preference for Perceiving decreases in line with occupational level.

Figure 3.5: Judging-Perceiving⁶⁹ and occupational level (OPPassessment data)

Note also that in this data set as a whole, preferences for Extraversion, iNtuition and Thinking are over-represented in comparison with the general UK population.

 $^{^{68}}$ $\chi^2 = 178.91$; significant at p<0.001.

Education

Specific educational qualifications were not available for the OPPassessment sample; however, the age at which individuals left full-time education was. There was found to be a link between two of the dimensions and the age at which individuals left full-time education. On average, those with a preference for iNtuition left education approximately two years later than those with a preference for Sensing. Those with a preference for Perceiving left education on average approximately half a year later than those with a preference for Judging.

Work area

Previous research suggests that an individual's MBTI Type influences their choice of career (Hammer, 1998), and indeed there is a statistically significant relationship between each dimension and work area. In the figures that follow, categories have been re-ordered according to the percentage of E, S, T or J, and work areas with fewer than 100 respondents have been omitted (as well as undefined work areas such as 'Other').

Figure 3.6: Extraversion–Introversion⁷⁰ and work area

	■Extraversion ■Introver	sion
Sales, customer service (n=766)	86.7%	13.3%
HR, training, guidance (n=591)	83.4%	16.6%
Finance (n=1,098)	76.5%	23.5%
Education (n=386)	76.2%	23.8%
Health, social services, etc (n=788)	75.0%	25.0%
Business services (n=405)	73.1%	26.9%
Research and development (n=420)	72.6%	27.4%
IT (n=1,277)	72.4%	27.6%
Unskilled operative (n=129)	71.3%	28.7%
Science, engineering (n=738)	71.1%	28.9%
Admin or secretarial (n=811)	70.0%	30.0%
Skilled operative (n=356)	64.3%	35.7%

100

 $^{^{70}~\}chi^2 = 139.24$; significant at p<0.001.

■ Sensing ■ Intuition Unskilled operative (n=129) 22.5% Skilled operative (n=356) 23.9% Admin or secretarial (n=811) 29.0% Finance (n=1,098)32.3% Business services (n=405) 39.0% Sales, customer service (n=766) 40.5% Science, engineering (n=738) 42.3% IT (n=1,277) 44.5% Research and development (n=420) 45.0% Health, social services, etc (n=788) 45.7% Education (n=386) 61.4% HR, training, guidance (n=591) 64.1%

Figure 3.7: Sensing-iNtuition⁷¹ and work area

 $^{^{71} \}chi^2 = 400.92$; significant at p<0.001.

Figure 3.8: Thinking–Feeling⁷² and work area

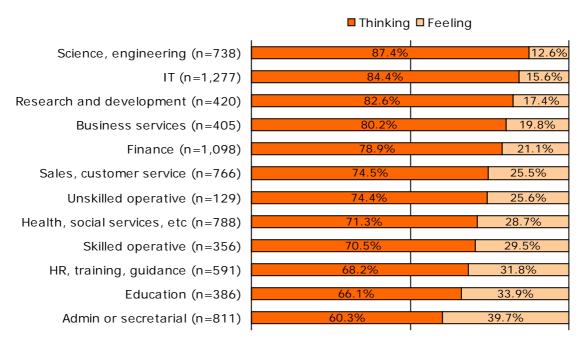


Figure 3.9: Judging-Perceiving⁷³ and work area

■ Judging ■ Perceiving Skilled operative (n=356) 28.1% 28.9% Admin or secretarial (n=811) Unskilled operative (n=129) 33.3% 66.7% Research and development (n=420) 35.7% 64.3% 36.7% Finance (n=1,098) Science, engineering (n=738) 62.6% 37.4% Business services (n=405) 37.5% Health, social services, etc (n=788) 37.7% 37.7% Sales, customer service (n=766) IT (n=1,277)38.2% 43.5% Education (n=386) HR, training, guidance (n=591) 51.8%

102

 $^{^{72}}$ $\chi^2 {=}\, 297.81;$ significant at p<0.001. 73 $\chi^2 {=}\, 104.39;$ significant at p<0.001.

Nationality

Information on nationality was available for the OPPassessment group. Of the sample, 97% were Danish; other nationalities included Swedish, Norwegian and German. However, no other nationality was represented in sufficiently large numbers for an analysis of Type differences by nationality to be conducted.

Employment status

Employment status was available for the OPPassessment sample, and showed a relationship with the Sensing-iNtuition, Thinking-Feeling and Judging-Perceiving dimensions. Those who were self-employed were more likely than other groups to have a preference for iNtuition, 74 whereas those who worked part-time were more likely than other groups to have a preference for Feeling. 75 This is likely to be a gender effect; 86% of part-time workers were female, compared with 46% of the total group and 44% of full-time workers. In addition, those who worked part-time were more likely to have a preference for Judging than those who worked full-time who were, in turn, more likely to have a preference for Judging than those who were self-employed. 76

Appendix 1: Sample descriptions

Sample 1: Data from OPPassessment (representative Danishspeaking professional and managerial sample)

This sample consists of 13,561 individuals who completed the MBTI Step I questionnaire in Danish via the OPPassessment system between January 2004 and June 2008. Of these respondents, 52% were male and 48% were female. Age ranged from 16 to 74 years, with a mean of 41 and a median of 40.

Nationality was disclosed by 84% of respondents. Of these, 97% were Danish. No other individual nationality was represented in large numbers.

Nationality	Percentage
Danish	96.5%
Other	3.5%

 $^{^{74}}$ $\chi^2 {=}\, 29.82;$ significant at p<0.001. 75 $\chi^2 {=}\, 141.88;$ significant at p<0.001. 76 $\chi^2 {=}\, 21.92;$ significant at p<0.001.

MBTI Step I European Data Supplement

The majority of the group were in full-time employment:

Employment status	Percentage
Full-time	91.5%
Part-time	5.8%
Self-employed	2.1%
Unemployed	0.5%
Retired	0.1%
Homemaker	<0.1%

Many of the group were of managerial level or above, although the largest single group was employee level (50.4%):

Occupational level	Percentage
Top level	3.6%
Senior executive	6.4%
Upper middle management	8.9%
Middle management	20.7%
First-level	4.8%
management/supervisor	
Employee	50.4%
Other	5.2%

A range of work areas were represented:

Work area (job type)	Percentage
IT	12.4%
Finance	10.7%
Admin or secretarial	7.9%
Health, social services, etc.	7.7%
Sales, customer service	7.4%
Science, engineering	7.2%
HR, training, guidance	5.7%
Research and development	4.1%
Business services	3.9%
Education	3.8%
Skilled operative	3.5%
Unskilled operative	1.3%
Land, sea or air transport	0.4%
Military, police, prison, fire	0.3%
Leisure, personal service	0.3%
Other private sector	9.1%
Other public sector	8.5%
Other	6.0%

Sample 2: MBTI practitioners

This sample consisted of 221 MBTI practitioners who took part in a research study to look at the relationship between MBTI reported Type and best-fit Type.

Of this group, 134 (61%) were female and 87 (39%) were male. Age ranged from 25 to 67 years, with a mean of 44. The majority of respondents did not disclose their nationality (138 individuals, or 62%). However, of those who did, all were Danish (83 individuals, or 38%).

In total, 142 respondents (64%) did not disclose their employment status. Of those who did, 61 (28%) described themselves as working full-time and four (2%) as working part-time. Thirteen individuals (6%) described their employment status as self-employed, and one person (0.5%) was unemployed.

Of this sample group, 141 (67%) did not disclose their job level. Thirty (14%) were at employee level, with one (0.5%) at first-level management or supervisory level, 22 (10%) at middle management level and ten (5%) at top or senior executive level. The most common job types amongst the group were 'HR, training, guidance' (44 individuals, or 20%), 'Health, social services' (11 individuals, or 5%) and 'Education' (eight individuals, or 4%).

MBTI Step I European Data Supplement

Sample 3: Media organisation employees

This sample consisted of 183 employees from a media organisation who took part in a research study to look at the relationship between MBTI reported Type and best-fit Type.

Of this group, 109 (60%) were female and 73 (40%) were male. The gender of one person was unrecorded. In terms of roles, 92 (50%) were journalists and 32 (17%) were editors or chief editors. A variety of other roles were represented, but each in relatively small numbers.

MBTI[®] Step I[™] instrument

European Data Supplement

Dutch

January 2009

Contents

Introduction	110
Type distribution	111
OPPassessment data (representative Dutch-speaking profes	ssional
and managerial sample)	112
General population sample	113
Management development programme participants	114
MBTI qualifying training course delegates	115
MBTI practitioners	116
Internal consistency reliability	118
Intercorrelations between MBTI dimensions	119
Best-fit validity: the accuracy of the Dutch MBTI Step I instrur	ment in
predicting best-fit Type	
Construct validity: the relationship between MBTI best-fit Type	e and
16PF scores	122
Group differences in Type	128
Gender	128
Age	129
Occupational level	129
Education	131
Work area	132
Nationality	134
Employment status	136
Appendix 1: Sample descriptions	137
Sample 1: Data from OPPassessment (representative Dutch	1-
speaking professional and managerial sample)	137
Sample 2: General population	138
Sample 3: Management development programme participar	าts 138
Sample 4: MBTI qualifying training course participants	138
Sample 5: MBTI practitioners (best-fit study)	
Sample 6: MBTI practitioners (MBTI vs 16PF study)	139
Appendix 2: Brief summary of what the 16PF instrument measure	sures 141

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner.

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

[©] Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

[®] MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

TM Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 $[\]otimes$ OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. $^{\text{TM}}$ OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Introduction

Data from six different samples were analysed to produce the findings in this chapter. A brief description of each sample is given below. Further details of the samples are provided in Appendix 1.

- A group of 13,430 individuals who completed the MBTI Step I questionnaire in Dutch via the OPPassessment system between 2004 and mid-2008.⁷⁷ This sample is considered to be representative of the groups of people with whom the Dutch MBTI instrument has been and will be used for applications such as management development, coaching, counselling and teambuilding. As such, it is likely to represent a cross-section of the Dutch-speaking professional and managerial population.
- A sample of 214 individuals who completed a trial version of the MBTI questionnaire as part of the development of the MBTI Step II instrument. This sample was designed to be representative of the Dutch general population.
- A group of 392 Dutch participants on management development programmes at Ashridge Business School, run between 2000 and 2003.
- A group of 197 delegates on MBTI qualifying training courses held in The Netherlands between 2004 and 2007.
- A sample of 199 MBTI practitioners who took part in a research study to look at the relationship between MBTI reported Type and best-fit Type.
- A sample of 95 MBTI practitioners who took part in a research study to look at the relationship between MBTI best-fit Type and a well-known trait-based personality instrument (the 16PF[®] questionnaire).

The results of the analyses are outlined below.

_

⁷⁷ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via email and/or completed online.

email and/or completed online.

78 Data reproduced with kind permission from Ashridge Business School.

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. Below are Type tables for five of the six Dutch samples described above. 79

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group. An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is underrepresented. Asterisks are used to denote whether the over- or underrepresentations are statistically significant, based on the results of chisquare analysis.80

Ideally, the Type distribution from a large representative sample of the Dutch population would be used to calculate SSRs in this data supplement. However, such a sample does not currently exist; the closest sample that we do have to a Dutch population is too small for us to have full confidence that the Type distribution is representative. Instead, SSRs have been calculated using Type data from the UK general population (Kendall, 1998), which can be justified by the fact that Type distributions for comparable Dutch and British groups, such as managers and professionals, are similar. Evidence (eg Hackston and Kendall, 2004; Quenk et al., 2004; Kirby, Kendall and Barger, 2007) does suggest that although Type-related behaviours vary a good deal from country to country and from culture to culture, the frequencies of underlying MBTI Types do not.

⁷⁹ The type distribution of the 95 MBTI practitioners who took part in a research study to look at the relationship between MBTI best-fit type and the 16PF®5 questionnaire is shown separately later in this

chapter.
⁸⁰ Chi-square analysis (often abbreviated to χ^2) is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the UK general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each type within a particular sample differs significantly from the proportion of people reporting the same type within the reference group.

OPPassessment data (representative Dutch-speaking professional and managerial sample)

Table 4.1: Type table for OPPassessment data (reported Type, n=13,430)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=1,204	n=383	n=110	n=322	E	9,921	73.9%**
9.0%	2.9%	0.8%	2.4%	1	3,509	26.1%**
SSR=0.65**	SSR=0.22**	SSR=0.48**	SSR=1.70*			
				S	7,554	56.2%**
ISTP	ISFP	INFP	INTP	N	5,876	43.8%**
n=538	n=182	n=240	n=530	'	0,070	10.070
4.0%	1.4%	1.8%	3.9%	T	9,405	70.0%**
SSR=0.62**	SSR=0.22**	SSR=0.56**	SSR=1.61**	F	4,025	30.0%**
ESTP	ESFP	ENFP	ENTP] '	1,020	00.070
n=1,218	n=599	n=1,069	n=1,745	J	7,309	54.4%**
9.1%	4.5%	8.0%	13.0%	P	6,121	45.6%**
SSR=1.56**	SSR=0.51**	SSR=1.26*	SSR=4.72**	<u> </u>	-,	
ESTJ	ESFJ	ENFJ	ENTJ			
n=2,490	n=940	n=502	n=1,358			
18.5%	7.0%	3.7%	10.1%			
SSR=1.78**	SSR=0.56**	SSR=1.36*	SSR=3.44**			

^{*}Difference significant at p<0.05, based on chi-square results.

The most common single Type preference is ESTJ (19% of the total); this is a common finding with managerial groups in other countries. The SSR results suggest that, in comparison with the UK general population, those with preferences for NT are over-represented and those with preferences for SF are under-represented. Again, this is a common finding with managerial groups.

^{**}Difference significant at p<0.01, based on chi-square results.

General population sample

Table 4.2: Type table for Dutch general population sample (n=214)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=17	n=25	n=2	n=5	E	133	62.1%**
7.9%	11.7%	0.9%	2.3%	1	81	37.9%**
SSR=0.58*	SSR=0.92	SSR=0.53	SSR=1.64			
ISTP	ISFP	INFP	INTP	S	142	66.4%**
n=12	n=7	n=8	n=5	N	72	33.6%**
5.6%	3.3%	3.7%	2.3%			
SSR=0.88	SSR=0.54	SSR=1.16	SSR=0.96	T	104	48.6%
ESTP	ESFP	ENFP	ENTP	F	110	51.4%
n=17	n=20	n=20	n=15			
7.9%	9.3%	9.3%	7.0%	J	110	51.4%
SSR=1.36	SSR=1.07	SSR=1.48	SSR=2.50**	P	104	48.6%
ESTJ	ESFJ	ENFJ	ENTJ			
n=23	n=21	n=7	n=10			
10.7%	9.8%	3.3%	4.7%			
SSR=1.03	SSR=0.77	SSR=1.18	SSR=1.62			

^{*}Difference significant at p<0.05, based on chi-square results.

The most common single Type preference amongst this sample is ISFJ (12% of the total), closely followed by ESTJ (11%). ISFJ is the second most common single Type preference amongst the UK general population sample (13%), with ESTJ being the fourth most common (10%).

Overall, the SSR results suggest that the Dutch sample is similar to the UK general population group, but that it contains a slightly higher proportion of people with preferences for Extraversion and iNtuition. However, the reader should bear in mind that the Dutch sample is considerably smaller than the UK sample, and therefore these findings should be treated with caution.

^{**}Difference significant at p<0.01, based on chi-square results.

Management development programme participants

Table 4.3: Type table for management development programme participants (reported Type, n=392)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=35 8.9% SSR=0.65*	n=2 0.5% SSR=0.04**	n=1 0.3% SSR=0.15*	n=18 4.6% SSR=3.26**	E I S	292 100 200	74.5%** 25.5%** 51.0%**
n=8	n=2	n=10	n=24	N	192	49.0%**
2.0% SSR=0.32** ESTP	0.5% SSR=0.08** ESFP	2.6% SSR=0.80 ENFP	6.1% SSR=2.50** ENTP	T . F	338 54	86.2%** 13.8%**
n=37 9.4% SSR=1.62**	n=6 1.5% SSR=0.18**	n=15 3.8% SSR=0.61	n=62 15.8% SSR=5.74**	J P	228 164	58.2% 41.8%
n=101 25.8% SSR=2.48**	n=9 2.3% SSR=0.18**	n=9 2.3% SSR=0.83	n=53 13.5% SSR=4.60**			

^{*}Difference significant at p<0.05, based on chi-square results.

The Type distribution is similar to the OPPassessment sample described in Table 4.1, with ESTJ (26% of the total) being the most common single Type preference, and NT being over-represented and SF being under-represented. The main difference between the two distributions is a higher proportion of people with a preference for Thinking amongst the group shown here. This is likely to be at least partly a gender effect, as this sample contains a higher proportion of males (88%) than does the OPPassessment group (64%).

^{**}Difference significant at p<0.01, based on chi-square results.

MBTI qualifying training course delegates

Reported Type results from the MBTI instrument and best-fit (validated) Type were available for the whole group.

Table 4.4: Type tables for training course delegates

Reported Type (n=197)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=9	n=8	n=3	n=5	E	142	72.1%**
4.6%	4.1%	1.5%	2.5%	1	55	27.9%**
SSR=0.34**	SSR=0.32**	SSR=0.88	SSR=1.79			
LOTE	LOED	LNIED	LAITE	S	74	37.6%**
ISTP	ISFP	INFP	INTP	N	123	62.4%**
n=4	n=7	n=12	n=7			
2.0%	3.6%	6.1%	3.6%	Т	79	40.1%
SSR=0.31*	SSR=0.59	SSR=1.91*	SSR=1.50	F	118	59.9%
ESTP	ESFP	ENFP	ENTP] '	110	37.770
n=9	n=13	n=45	n=21	J	79	40.1%**
4.6%	6.6%	22.8%	10.7%	P	118	59.9%**
SSR=0.79	SSR=0.76	SSR=3.62**	SSR=3.82**] .		07.770
ESTJ	ESFJ	ENFJ	ENTJ			
n=16	n=8	n=22	n=8			
8.1%	4.1%	11.2%	4.1%			
SSR=0.78	SSR=0.33**	SSR=4.00**	SSR=1.41			

Best-fit Type (n=197)

				_		
ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=7	n=7	n=9	n=4	E	130	66.0%**
3.6%	3.6%	4.6%	2.0%	1	67	34.0%**
SSR=0.26**	SSR=0.28**	SSR=2.71**	SSR=1.43			
LCTD	ICED	LNED	LNTD	S	73	37.1%**
ISTP	ISFP	INFP	INTP	N	124	62.9%**
n=3	n=8	n=20	n=9			
1.5%	4.1%	10.2%	4.6%	T	67	34.0%**
SSR=0.23**	SSR=0.67	SSR=3.19**	SSR=1.92	F	130	66.0%**
ESTP	ESFP	ENFP	ENTP] '	130	00.070
n=6	n=15	n=43	n=21	ر	72	36.5%**
3.0%	7.6%	21.8%	10.7%	P	125	63.5%**
SSR=0.52	SSR=0.87	SSR=3.46**	SSR=3.82**	<u>'</u>	120	00.070
ESTJ	ESFJ	ENFJ	ENTJ			
n=13	n=14	n=14	n=4			
6.6%	7.1%	7.1%	2.0%			
SSR=0.63	SSR=0.56*	SSR=2.54**	SSR=0.69			

For both tables above: *Difference significant at p<0.05, based on chi-square results.

Looking at reported Type, the most frequent Type preference is ENFP (23% of the total), followed by ENFJ and ENTP (both 11%). Overall, the group tends to have a preference for Extraversion, and to a lesser extent for iNtuition, Feeling and Perceiving.

^{**}Difference significant at p<0.01, based on chi-square results.

In terms of best-fit Type, ENFP (22%) is also the most frequently occurring Type preference, followed by ENTP (11%) and INFP (10%). The general pattern is very similar to that found with reported Type, with the group tending to have a preference for Extraversion and Feeling, and to a slightly lesser extent for Perceiving and iNtuition.

It is known that people often feel pressure to exhibit more of a Thinking style of behaviour in business settings. This may help to explain why we find a lower proportion of Thinking Types when we look at best-fit Type than when we look at reported Type.

Looking at the SSR figures it can be seen that, compared with the UK general population, those with a preference for iNtuition are particularly over-represented.

Although not typical of the general population, similar results (especially with regard to Extraversion and iNtuition) have been found with other groups of MBTI practitioners and MBTI qualifying training course delegates.

MBTI practitioners

Reported Type results from the MBTI instrument and best-fit (validated) Type were available for the whole group.

Table 4.5: Type table for MBTI practitioners

Reported Type (n=199)

ISTJ	ISFJ	INFJ	INTJ	Type	n	%
n=6	n=9	n=8	n=11	E	114	57.3%
3.0%	4.5%	4.0%	5.5%	1	85	42.7%
SSR=0.22**	SSR=0.36**	SSR=2.35*	SSR=3.93**			
				S	50	25.1%**
ISTP	ISFP	INFP	INTP	N	149	74.9%**
n=5	n=8	n=23	n=15	'	1 1 7	7 1.770
2.5%	4.0%	11.6%	7.5%	Т	83	41.7%
SSR=0.39*	SSR=0.66	SSR=3.63**	SSR=3.08**	F	116	58.3%
ESTP	ESFP	ENFP	ENTP] '	110	30.370
n=5	n=4	n=51	n=22] <u>J</u>	66	33.2%**
2.5%	2.0%	25.6%	11.1%	P	133	66.8%**
SSR=0.43	SSR=0.23**	SSR=4.07**	SSR=4.01**]		
ESTJ	ESFJ	ENFJ	ENTJ			
n=8	n=5	n=8	n=11			
4.0%	2.5%	4.0%	5.5%			
SSR=0.39**	SSR=0.20**	SSR=1.46	SSR=1.88			

DCSCIRCITOCO	Best-fit	Type ((n=1	99)
--------------	----------	--------	------	-----

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=8	n=10	n=11	n=13	E	107	53.8%
4.0%	5.0%	5.5%	6.5%	1	92	46.2%
SSR=0.29**	SSR=0.39**	SSR=3.23**	SSR=4.64**			
				S	54	27.1%**
ISTP	ISFP	INFP	INTP	N	145	72.9%**
n=5	n=8	n=25	n=12	'	1 10	, 2. , , 0
2.5%	4.0%	12.6%	6.0%	Т	80	40.2%
SSR=0.39*	SSR=0.66	SSR=3.95**	SSR=2.46**	F	119	59.8%
ESTP	ESFP	ENFP	ENTP] '	117	07.070
n=4	n=5	n=44	n=20	J	76	38.2%**
2.0%	2.5%	22.1%	10.1%	P	123	61.8%**
SSR=0.35*	SSR=0.29**	SSR=3.51**	SSR=3.65**		.20	01.076
ESTJ	ESFJ	ENFJ	ENTJ			
n=9	n=5	n=11	n=9]		
4.5%	2.5%	5.5%	4.5%			
SSR=0.43**	SSR=0.20**	SSR=2.01*	SSR=1.54			

For both tables above: *Difference significant at p<0.05, based on chi-square results. **Difference significant at p<0.01, based on chi-square results.

Looking at reported Type, the most frequent Type preference is ENFP (26% of the total), followed by INFP (12%). Overall, the group tends to have a preference for iNtuition, and to a lesser extent for Perceiving, Feeling and Extraversion.

In terms of best-fit Type, ENFP (22%) is also the most frequently occurring Type preference, followed by INFP (13%). The general pattern is very similar to that found with reported Type, with the group tending to have a preference for iNtuition, and to a lesser extent for Perceiving, Feeling and Extraversion.

Internal consistency reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. The internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for the Dutch samples are shown in Table 4.6

Table 4.6: Internal consistency reliability

Dimension	Coefficient alpha				
	General	OPPassessment			
	population				
E-I	0.86	0.85			
S-N	0.71	0.77			
T–F	0.84	0.80			
J_P	0.86	0.83			

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. 81 On this basis, all of the dimensions of the questionnaire show good reliability in both groups. In addition, the alpha coefficients have been found to be consistent across different age groups and across males and females.

c

⁸¹ For example, see Nunnally (1978) or Kline (2000).

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire.

The intercorrelations between dimensions amongst the Dutch OPPassessment sample are shown in Table 4.7. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores.⁸²

Table 4.7: Intercorrelations between dimensions

	E-I	S-N	T-F	J-P
E-I		-0.18**	-0.12**	-0.07**
S-N			0.09**	0.40**
T-F				0.14**
J-P				

^{**}Significant at p<0.01.

Although statistically significant, only very low correlations were found between most of the dimensions. The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving.

⁸² Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

Best-fit validity: the accuracy of the Dutch MBTI Step I instrument in predicting best-fit Type

The purpose of the MBTI instrument is to help individuals to establish their validated or 'best-fit' psychological Type. A key measure of the validity of the instrument is, therefore, how well the results relate to best-fit (validated) Type. These data are useful to practitioners in knowing how typically accurate the reported result is likely to be.

Best-fit data are available for two of the samples, alongside reported Type. The training delegates established their best-fit Type as part of their training programme, and the best-fit data were collected for the whole sample (197 people). Best-fit data were also available for the Dutch MBTI practitioners (n=199).

Table 4.8 presents the results of the analysis comparing best-fit with reported Type. The Dutch questionnaire performs in a similar way to other language versions for which best-fit data are available, and there is very good evidence for the accuracy of the instrument. In nearly 72% of cases, a respondent's reported Type will match their best-fit Type, and in 93% of cases at least three of the four preferences will match.

Table 4.8: Match of reported and best-fit Type

	Dutch training course delegates (n=197)		Dutch MBTI practitioners (N=199)	
Agrees with four letters	71.6%	92.9%	71.9%	93.0%
Agrees with three letters	21.3%	92.9%	21.1%	93.0%
Agrees with two letters	5.6%		6.0%	
Agrees with one letter	1.0%	7.1%	1.0%	7.0%
Agrees with no letters	0.5%		0.0%	

	Percentage agreement					
Dimension	Dutch training	Dutch MBTI				
	course delegates	Practitioners				
	(n=197)	(n=199)				
E-I	89.8%	91.5%				
S-N	92.4%	91.0%				
T–F	89.8%	87.4%				
J–P	90.4%	94.0%				

Further analysis was carried out to investigate the validity and accuracy of the questionnaire. MBTI qualifying training course delegates and MBTI practitioners were asked how confident they felt about their results on each Type dichotomy (on a scale from 1 to 5, where 5 indicated the highest degree of confidence). For every dimension, over 70% of each group were confident about their Type, with a considerably higher proportion than this expressing confidence with their E–I, J–P and S–N preferences. This corresponds with the findings of the best-fit research, where a high level of agreement was

found between reported and best-fit preferences for each of the four dimensions. All these figures provide further support for the validity of the MBTI approach. Detailed results are shown in Table 4.9.

Table 4.9: Degree of confidence in results

Degree of		Percentage of group						
confidence	E-	-I	S-	-N	T-	-F	J–P	
	Group	Group	Group	Group	Group	Group	Group	Group
	1 ⁸³	2 ⁸⁴	1	2	1	2	1	2
5 (highest)	45%	46%	41%	40%	39%	43%	52%	53%
4	42%	32%	41%	39%	41%	28%	32%	28%
3	10%	13%	13%	9%	15%	15%	9%	10%
2	3%	6%	5%	10%	5%	11%	7%	6%
1 (lowest)	1%	2%	1%	2%	0%	2%	1%	2%
% at 4 or	87%	78%	82%	79%	80%	71%	84%	81%
above								

⁸³ Training course delegates.84 MBTI practitioners.

Construct validity: the relationship between MBTI best-fit Type and 16PF scores

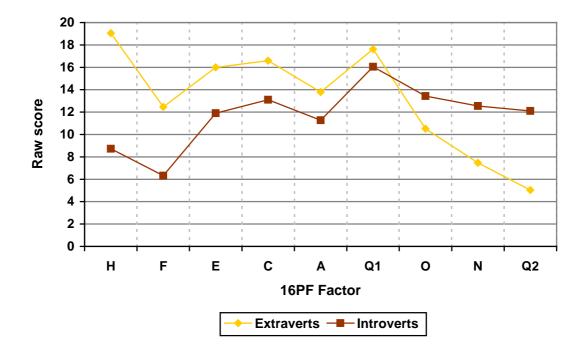
A study was carried out to explore the relationship between MBTI best-fit Type and scores on the Dutch version of the 16PF instrument, a trait-based personality questionnaire (Cattell, Cattell and Cattell, 1993). Details of the traits measured by the 16PF questionnaire are provided in Appendix 2. Technical details of the Dutch version of the questionnaire are available from OPP (see *Nederlandse 16PF*® *Testhandleiding*, IPAT, 2007).

The sample comprised 95 respondents, 46 male (48.4%) and 49 female (51.6%). The mean age was 42 years. Sixty-one per cent of the sample were of Dutch nationality and 34% were of Belgian nationality. All were MBTI respondents who knew their best-fit Type.

Table 4.10 shows the number and percentage of each of the 16 MBTI Types within this sample.

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=4	n=2	n=4	n=7	E	55	57.9%
4.2%	2.1%	4.2%	7.4%	1	40	42.1%
ISTP	ISFP	INFP	INTP			
n=3	n=3	n=11	n=6	S	23	24.2%
3.2%	3.2%	11.6%	6.3%	N	72	75.8%
ESTP	ESFP	ENFP	ENTP			
n=2	n=1	n=19	n=14	T	46	48.4%
2.1%	1.1%	20.0%	14.7%	F	49	51.6%
ESTJ	ESFJ	ENFJ	ENTJ			
n=4	n=4	n=5	n=6	J	36	37.9%
4.2%	4.2%	5.3%	6.3%	P	59	62.1%

Table 4.10: MBTI best-fit Type table

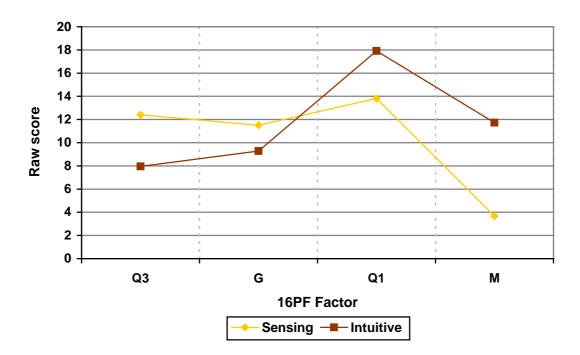

Amongst this group, ENFP (20%) is the most frequently occurring Type preference, followed by ENTP (15%) and INFP (12%). Overall, the group tends to have a preference for iNtuition, and to a lesser extent for Perceiving and Extraversion. There is a fairly even split of Thinking and Feeling Types.

Tables 4.11–4.14 and Figures 4.1–4.4 show the mean 16PF raw scores for individuals of each dichotomous preference, for those factors where significant differences were found between the mean raw scores obtained by people with different dichotomous preferences. Also shown are the differences between the mean raw scores (mean difference), the differences between the means as a proportion of the overall standard deviation (effect size) and the statistical significance of the difference (based on an independent samples t-test). The factors are shown in descending order of differences, based on the effect size (in the direction of E,S, T and J).

Table 4.11: Extraverted (E) versus Introverted (I) Types

	Factor	Е	I	Mean	Effect	Significance
			mean	difference	size	level
Н	Social Boldness	19.06	8.73	10.33	1.65	***
F	Liveliness	12.46	6.33	6.14	1.34	***
Ε	Dominance	16.00	11.90	4.10	0.77	***
С	Emotional Stability	16.60	13.10	3.50	0.76	***
Α	Warmth	13.79	11.28	2.52	0.75	***
Q1	Openness to	17.62	16.05	1.56	0.51	*
	Change					
0	Apprehension	10.51	13.43	-2.92	-0.55	**
N	Privateness	7.47	12.54	-5.07	-0.95	***
Q2	Self-Reliance	5.04	12.10	-7.07	-1.21	* * *

Figure 4.1: Mean raw scores of Extraverted and Introverted Types on the 16PF scales

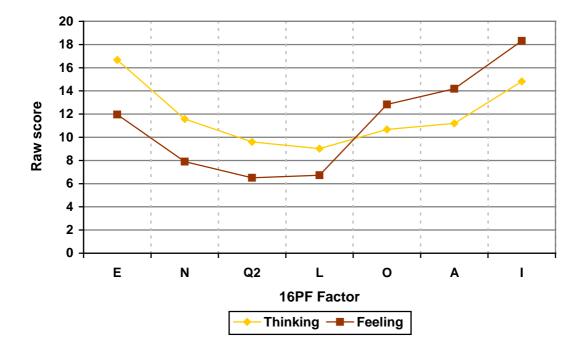


Those respondents showing a preference for Extraversion tend to score higher on Social Boldness (H), Liveliness (F), Dominance (E), Emotional Stability (C), Warmth (A) and Openness to Change (Q1). Those with a preference for Introversion tend to score higher on Self-Reliance (Q2), Privateness (N) and Apprehension (O).

Table 4.12: Sensing (S) versus iNtuition (N) Types

	Factor		I	Mean	Effect	Significance
		mean	mean	difference	size	level
Q3	Perfectionism	12.41	7.96	4.45	0.78	***
G	Rule-Consciousness	11.50	9.28	2.22	0.48	*
Q1	Openness to	13.81	17.91	-4.10	-1.34	***
	Change					
М	Abstractedness	3.68	11.73	-8.05	-1.49	***

Figure 4.2: Mean raw scores of Sensing and iNtuition Types on the 16PF scales

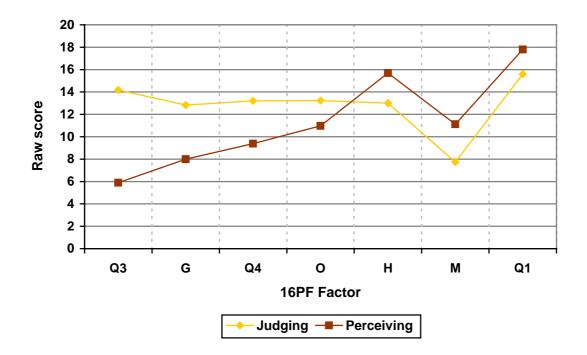


Those with a preference for Sensing tend to score higher on Perfectionism (Q3) and Rule-Consciousness (G). Those with a preference for iNtuition tend to score higher on Abstractness (M) and Openness to Change (Q1).

Table 4.13: Thinking (T) versus Feeling (F) Types

Fac	Factor		F	Mean	Effect	Significance
		mean	mean	difference	size	level
Ε	Dominance	16.67	11.96	4.71	0.88	***
N	Privateness	11.58	7.90	3.68	0.69	***
Q2	Self-Reliance	9.60	6.50	3.10	0.53	**
L	Vigilance	9.02	6.72	2.30	0.51	*
0	Apprehension	10.68	12.83	-2.15	-0.41	*
Α	Warmth	11.20	14.19	-2.99	-0.89	***
I	Sensitivity	14.82	18.31	-4.49	-0.89	***

Figure 4.3: Mean raw scores of Thinking and Feeling Types on the 16PF scales



Those with a preference for Thinking tend to score higher on Dominance (E), Privateness (N), Self-Reliance (Q2) and Vigilance (L). Those with a preference for Feeling tend to score higher on Sensitivity (I), Warmth (A) and Apprehension (O).

Table 4.14: Judging (J) versus Perceiving (P) Types

Facto	or	J	Р	Mean	Effect	Significance
		mean	mean	difference	size	level
Q3	Perfectionism	14.18	5.89	8.29	1.45	***
G	Rule-	12.83	8.00	4.83	1.04	***
	Consciousness					
Q4	Tension	13.20	9.39	3.82	0.78	***
0	Apprehension	13.24	10.97	2.28	0.43	*
Н	Social Boldness	13.00	15.69	-2.69	-0.43	*
M	Abstractedness	7.74	11.12	-3.38	-0.62	**
Q1	Openness to	15.59	17.79	-2.20	-0.72	**
	Change					

Figure 4.4: Mean raw scores of Judging and Perceiving Types on the 16PF scales

Those with a preference for Judging tend to score higher on Perfectionism (Q3), Rule-Consciousness (G), Tension (Q4) and Apprehension (O). Those with a preference for Perceiving tend to score higher on Openness to Change (Q1), Abstractedness (M) and Social Boldness (H).

These findings correspond closely with those found by previous research (eg Hackston, McPherson and Hindmarch, 2004; Russell and Karol, 1994).

In summary, there is good evidence for the validity of the Dutch MBTI Step I instrument. Specifically:

- There is a high level of agreement between best-fit and reported Type, as high as for other European language versions.
- Respondents are confident about their results.
- MBTI reported Type preferences show significant relationships with scores on several 16PF factors, in a way that might be expected.

Group differences in Type

Across four of the five samples for which reported Type data were available, a variety of different demographic information was collected. The relationship of Type to each of these factors is described below.

Gender

Most groups who take the MBTI questionnaire show a significant gender difference on the Thinking–Feeling dimension, and this is the case for three of the four groups in this study, as shown in Figure 4.5. 85 No significant gender difference was found amongst the training delegate group.

General population ■Thinking ■Feeling Male (n=89) 73.0% 27.0% Female (n=125) 31.2% 68.8% MBTI practitioners ■Thinking ■Feeling Male (n=75) 52.0% 48.0% Female (n=122) 34.4% 65.6% **OPPassessment sample** ■Thinking ■Feeling Male (n=8,557) 78.4% 21.6% Female (n=4,873) 55.4% 44.6%

Figure 4.5: Gender differences on the T–F dimension

When compared with the T–F distribution in the combined sample, Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women. This effect has been found many times with many different versions of the instrument in a number of different cultures.

128

⁸⁵ General population: χ^2 =36.42; significant at p<0.001. MBTI practitioners: χ^2 =8.72; significant at p<0.05. OPPassessment sample: χ^2 =779.14; significant at p<0.001.

Age

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, for Sensing versus iNtuition, for Thinking versus Feeling and for Judging versus Perceiving. The OPPassessment sample showed statistically significant relationships between age and three of the dimensions. ⁸⁶ The mean age of people with a preference for Introversion and/or Sensing was approximately one year higher than of those with a preference for Extraversion and/or iNtuition. The mean age of those with a preference for Feeling was approximately two years higher than of those with a preference for Thinking. This analysis was not carried out with the other samples because of their small size.

Table 4.15: Significant mean age differences

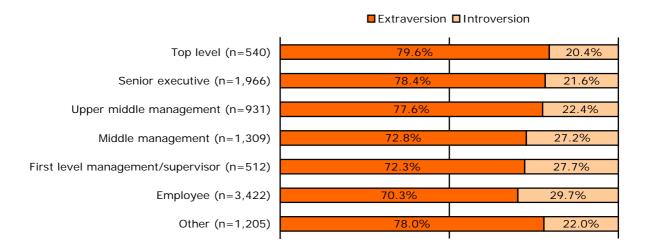
	Extraversion	Introversion	Difference	Sig.
Mean age (years)	37.28	38.51	1.23	***

	Sensing	iNtuition	Difference	Sig.
Mean age (years)	37.94	37.16	0.78	***

	Thinking	Feeling	Difference	Sig.
Mean age (years)	36.97	39.02	2.05	***

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.

Occupational level


Previous research in other countries has demonstrated that individuals in higher level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower level jobs (Quenk, Hammer and Majors, 2004). This is reflected in the relationship of the Sensing–iNtuition and Thinking–Feeling dimensions with occupational level in the OPPassessment sample. A relationship was also found with the Extraversion–Introversion dimension.

The data suggest that individuals at the top level are most likely to have a preference for Extraversion, and that the proportion of people

⁸⁶ Independent-samples t-tests; EI, SN and TF all significant at p<0.001.

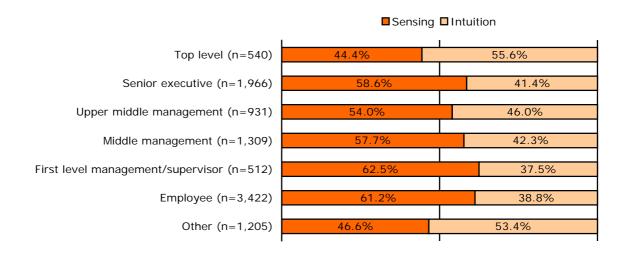
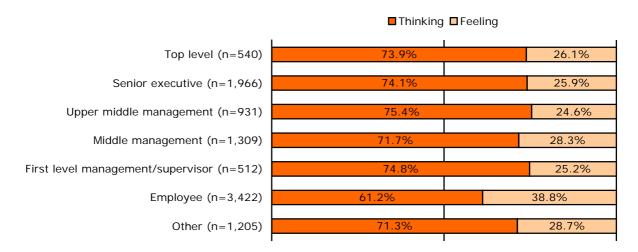

with an Extraversion preference decreases steadily with decreasing occupational level, as shown in Figure 4.6.

Figure 4.6: Extraversion–Introversion⁸⁷ and occupational level (OPPassessment data)

The data also suggest that individuals at the top level are most likely to have a preference for iNtuition, followed by upper middle managers. The proportions of those with preferences for iNtuition were lowest amongst people from first level middle management down to employee level, as shown in Figure 4.7.


Figure 4.7: Sensing-iNtuition88 and occupational level (OPPassessment data)

 $^{^{87}}$ $\chi^2 {=}\, 70.79;$ significant at p<0.001. 88 $\chi^2 {=}\, 124.07;$ significant at p<0.001.

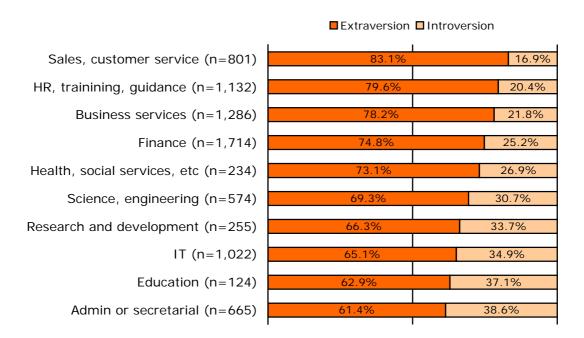
It was also found that those with preferences for Thinking are slightly under-represented at employee level, as shown in Figure 4.8. All other levels contained a similar (higher) proportion of Thinking Types.

Figure 4.8: Thinking–Feeling⁸⁹ and occupational level (OPPassessment data)

Note also that in this data set as a whole, preferences for Extraversion, iNtuition and Thinking are over-represented in comparison with the UK general population.

Education

The data for the MBTI qualifying training course delegates showed no significant differences between the preferences of those educated to degree level (or above) and those who did not hold a degree. However, this finding is taken from a sample containing relatively few people who did not have a degree (14 individuals), so is inconclusive at this stage.


Specific educational qualifications were not available for the OPPassessment sample; however, the age at which individuals left full-time education was. There was found to be a link between preferences and the age at which individuals left full-time education, with people with preferences for Extraversion, iNtuition, Thinking and Perceiving likely to have left education at a slightly older age. Although statistically significant, the differences in average age were never more than one year.

⁸⁹ χ^2 = 160.07; significant at p<0.001.

Work area

Previous research into MBTI Type suggests that an individual's Type influences their choice of career (Hammer, 1998), and indeed there is a statistically significant relationship between each dimension and work area. In the figures that follow, categories have been re-ordered according to the percentage of E, S, T or J, and work areas with less than 100 respondents have been omitted (as well as undefined work areas such as 'Other').

Figure 4.9: Extraversion–Introversion on and work area

 $^{^{90}}$ χ^2 =211.07; significant at p<0.001.

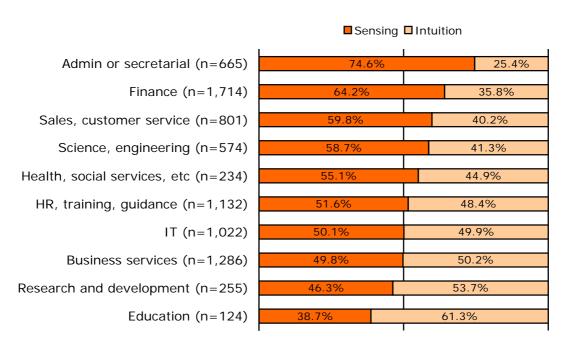
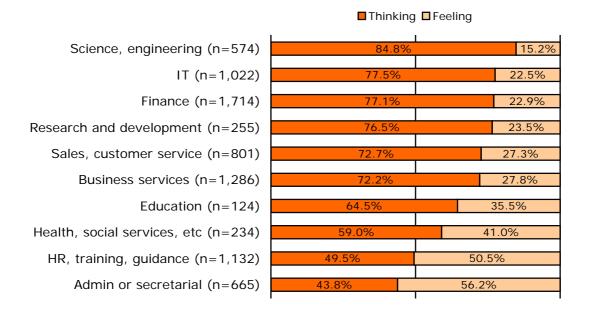



Figure 4.10: Sensing-iNtuition⁹¹ and work area

Figure 4.11: Thinking-Feeling⁹² and work area

 $^{^{91}}$ $\chi^2 = 235.55$; significant at p<0.001. 92 $\chi^2 = 598.25$; significant at p<0.001.

■ Judging ■ Perceiving Admin or secretarial (n=665) 34.7% Health, social services, etc (n=234) 35.5% 64.5% 38.9% Science, engineering (n=574) Education (n=124)56.5% 43.5% 45.9% Research and development (n=255)54.1% 46.3% Sales, customer service (n=801) Finance (n=1,714)46.4% 53.6% IT (n=1,022)47.6% 48.9% Business services (n=1,286) HR, training, guidance (n=1,132) 46.4% 53.6%

Figure 4.12: Judging-Perceiving ⁹³ and work area

Nationality

For the OPPassessment group, information on nationality was available. Eighty per cent of the group were Dutch and 18% were Belgian. The remaining 2% were of a range of other nationalities. Type tables for the two main nationalities are shown below, along with a table summarising the differences. Analysis suggested that the Dutch sub-group was significantly more likely to have preferences for Extraversion, ⁹⁴ iNtuition, ⁹⁵ Feeling ⁹⁶ and Perceiving ⁹⁷ than the Belgian sub-group.

 $^{^{93}}$ $\chi^2 = 109.17$; significant at p<0.001.

 $^{^{94}}$ χ^2 =29.64; significant at p<0.001.

 $^{^{95}}$ $\chi^2 = 18.44$; significant at p<0.001.

 $[\]chi^{96} \chi^{2} = 22.74$; significant at p<0.001.

 $^{^{97}}$ $\chi^2 = 57.98$; significant at p<0.001.

Table 4.16: Type table for Dutch respondents (reported Type, n=9,348)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=739	n=253	n=73	n=208	E	7,047	75.4%**
7.9%	2.7%	0.8%	2.2%	1	2,301	24.6%**
SSR=0.58**	SSR=0.21**	SSR=0.46**	SSR=1.58*			
				S	5,175	55.4%**
ISTP	ISFP	INFP	INTP	N	4,173	44.6%**
n=358	n=138	n=174	n=358		.,	
3.8%	1.5%	1.9%	3.8%	Т Т	6,415	68.6%**
SSR=0.60**	SSR=0.24**	SSR=0.58**	SSR=1.56**	F	2,933	31.4%**
ESTP	ESFP	ENFP	ENTP	'	2,700	01.170
n=882	n=473	n=794	n=1,243] <u>J</u>	4,928	52.7%**
9.4%	5.1%	8.5%	13.3%	P	4,420	47.3%**
SSR=1.62**	SSR=0.58**	SSR=1.35**	SSR=4.83**		.,0	.,,
ESTJ	ESFJ	ENFJ	ENTJ			
n=1,677	n=655	n=373	n=950			
17.9%	7.0%	4.0%	10.2%			
SSR=1.72**	SSR=0.56**	SSR=1.45*	SSR=3.46**			

Table 4.17: Type table for Belgian Dutch-speaking respondents (reported Type, n=2,034)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=261	n=76	n=19	n=54	E	1,415	69.6%**
12.8%	3.7%	0.9%	2.7%	1	619	30.4%**
SSR=0.94	SSR=0.29**	SSR=0.55*	SSR=1.89**			
				S	1,232	60.6%**
ISTP	ISFP	INFP	INTP	N	802	39.4%**
n=90	n=12	n=30	n=77		002	C 71.176
4.4%	0.6%	1.5%	3.8%	Т	1,505	74.0%**
SSR=0.69**	SSR=0.10**	SSR=0.46**	SSR=1.55*	F	529	26.0%**
ESTP	ESFP	ENFP	ENTP] '	027	20.070
n=153	n=52	n=128	n=231	J	1,261	62.0%*
7.5%	2.6%	6.3%	11.4%	P	773	38.0%*
SSR=1.29*	SSR=0.29**	SSR=1.00	SSR=4.12**			
ESTJ	ESFJ	ENFJ	ENTJ			
n=440	n=148	n=64	n=199			
21.6%	7.3%	3.1%	9.8%			
SSR=2.08**	SSR=0.58**	SSR=1.14	SSR=3.33**			

For both tables above: *Difference significant at p<0.05, based on chi-square results.

Table 4.18: Summary of differences by nationality

	Е	I	S	N	Т	F	J	Р
Dutch	75%	25%	55%	45%	69%	31%	53%	47%
(n=9,348)								
Belgian	70%	30%	61%	39%	74%	26%	62%	38%
(n=2,034)								

^{**}Difference significant at p<0.01, based on chi-square results.

Employment status

Employment status (available for the OPPassessment sample) showed a relationship with the Sensing-iNtuition, Thinking-Feeling and Judging-Perceiving dimensions. Those who were self-employed were more likely than other groups to have a preference for iNtuition, 98 whereas those who worked part-time were more likely than other groups to have a preference for Feeling. 99 This is likely to be a gender effect; 77% of part-time workers were female, compared with 37% of the total group and 30% of full-time workers.

 $^{^{98}}$ $\chi^2 = 35.36$; significant at p<0.001. 99 $\chi^2 = 267.19$; significant at p<0.001.

Appendix 1: Sample descriptions

Sample 1: Data from OPPassessment (representative Dutchspeaking professional and managerial sample)

This sample consists of 13,430 individuals who completed the MBTI instrument in Dutch via the OPPassessment system between January 2004 and June 2008. Of these respondents, 64% were male and 36% were female. Age ranged from 17 to 75 years, with a mean of 38 and a median of 37.

Nationality was disclosed by 87% of respondents. Of these, 80% were Dutch and 18% Belgian.

Nationality	Percentage
Dutch	80.3%
Belgian	17.5%
Other	2.2%

The majority of the group were in full-time employment:

Employment status	Percentage
Full-time	79.6%
Part-time	14.5%
Self-employed	4.6%
Unemployed	1.1%
Homemaker	0.1%
Retired	0.1%

The majority of the group were of managerial level or above, although the largest single group was employee level (34.6%):

Occupational level	Percentage
Top level	5.5%
Senior executive	19.9%
Upper middle management	9.4%
Middle management	13.2%
First level	5.2%
management/supervisor	
Employee	34.6%
Other	12.2%

A range of work areas were represented:

Work area (job type)	Percentage
Finance	17.1%
Business services	12.9%
HR, training, guidance	11.3%
IT	10.2%
Sales, customer service	8.0%
Admin or secretarial	6.6%
Science, engineering	5.7%
Research and development	2.5%
Health, social services, etc.	2.3%
Education	1.2%
Land, sea or air transport	0.9%
Skilled operative	0.5%
Military, police, prison, fire	0.4%
Leisure, personal service	0.2%
Unskilled operative	0.1%
Other public sector	5.0%
Other private sector	2.5%
Other	12.3%

Sample 2: General population

This sample consisted of 214 individuals who completed a trial version of the MBTI questionnaire as part of the development of the Step II instrument in 2003. The sample was designed to be representative of the Dutch general population, and every individual was of Dutch nationality.

Of the sample group, 125 (58%) were female and 89 (42%) male; age ranged from 16 to 73 years (with an average age of 37).

In terms of occupational level, 76 individuals (36%) described themselves as being at employee level, with 15 (7%) at first level management or supervisory level, 37 (17%) at middle management level, and nine (4%) at top or senior executive level.

Sample 3: Management development programme participants

This sample consisted of 392 Dutch participants on management development programmes at Ashridge Business School, run between 2000 and 2003. Of this group, 88% were male and 12% female. Age ranged from 23 to 58 years.

Sample 4: MBTI qualifying training course participants

This sample consisted of 197 delegates on Dutch MBTI training programmes from early 2005 to mid 2007. Of this group, 116 (58.9%) were female and 81 (41.1%) male; age ranged from 23 to 60 years (with an average age of 41).

Of this group, 175 individuals (89%) were educated to degree level or above. Of these, 15 (8%) held post-doctoral qualifications, 96 (49%) held a Doctorate and 62 (32%) held a Masters degree. The remaining two (8%) held a first degree.

In total, 117 (59%) described their employment status as full-time, whilst a further 45 people (23%) described themselves as self-employed. Thirty-four people (17%) worked part-time, and one person (1%) was not in employment.

In terms of occupational level, 46 people (23%) were at employee level, with four (2%) at first level management or supervisory level, 55 (28%) at middle management level, and 38 (19%) at top or senior executive level. Eight people (4%) described their job level as 'other', and the remaining 46 (23%) provided no details. The most common job type was 'HR, training, guidance' (154 people, or 78%).

Sample 5: MBTI practitioners (best-fit study)

This sample consisted of 199 MBTI practitioners who took part in a research study to look at the relationship between MBTI reported Type and best-fit Type.

Of this group, 122 (61%) were female and 75 (38%) were male. Age ranged from 23 to 63 years, with a mean of 42. Of these respondents, 118 respondents (59%) were Dutch, 56 (28%) were Belgian and two (1%) were of other nationalities; 23 (12%) did not disclose their nationality.

Eighty-eight people (44%) described themselves as working full-time, and 30 (15%) as working part-time. Forty-eight (24%) described their employment status as self-employed. Thirty respondents (15%) did not disclose their employment status.

In terms of occupational level, 43 people (22%) were at employee level, with eight (4%) at first level management or supervisory level, 29 (15%) at middle management level, and 40 (21%) at top or senior executive level. The most common job Types amongst the group were 'HR, training, guidance' (76 people, or 38%), and 'Business services' (31 people, or 16%).

Sample 6: MBTI practitioners (MBTI vs 16PF study)

This group comprised 95 respondents: 46 male (48%) and 49 female (52%). The mean age was 42 years. Of the sample group, 61% were of Dutch nationality, and 34% were of Belgian nationality.

MBTI Step I European Data Supplement

Nationality	Frequency	Percentage
Belgian	32	34%
German	1	1%
Dutch	58	61%
Other	1	1%
No data	3	3%

Educational levels were recorded in accordance with the Belgian and Dutch educational systems, respectively.

Belgian respondents:

Education level	Frequency	Percentage
Secondary education	4	11%
First degree	2	6%
Masters degree	26	74%
PhD	2	6%
No data	1	3%

Dutch respondents:

Education level	Frequency	Percentage
Unfinished Masters degree	1	2%
Higher professional education	15	25%
Masters degree	36	60%
No data	8	13%

Most of the Belgian sample (74%) had a Masters degree, and all of the Dutch sample had under taken further education.

Of the sample, 46 (48%) respondents worked full time, 14 (15%) part-time, 19 (20%) were self-employed, one (1%) was unemployed and one (1%) was a homemaker.

In terms of occupational level, 21 people (22%) were at employee level, with two (2%) at first level management or supervisory level, 23 (24%) at middle management level, and 19 (20%) at top or senior executive level. The most common job Types amongst the group were 'HR, training, guidance' (56 people, or 59%) and 'Education' (seven people, or 7%).

Appendix 2: Brief summary of what the 16PF instrument measures

The 16PF instrument is a robust measure of personality traits. It was developed by Raymond Cattell in 1949 and is available in Dutch and many other languages. The current fifth edition is one of the most validated predictors of human behaviour and is based on over 50 years of research and testing.

The questionnaire assesses an individual's personality against the following 16 Primary Factors:

16PF Primary Factor	Description
A Warmth	Your desire to develop close relationships with others
B Reasoning	The extent to which you can solve numerical and verbal problems
C Emotional Stability	How calmly you respond to life's demands
E Dominance	Your tendency to assert influence and/or control others
F Liveliness	How freely and spontaneously you express yourself
G Rule-Consciousness	How much value you place on externally imposed rules
H Social Boldness	How comfortable you feel in social situations
I Sensitivity	The extent to which emotions and sentiments influence your outlook and judgment
L Vigilance	The extent to which you are cautious of others' motives
M Abstractedness	How much attention you give to abstract rather than concrete observations
N Privateness	How much you like to keep personal information to yourself
O Apprehension	How prone you are to self-criticism
Q1 Openness to Change	The extent to which you enjoy new situations and experiences
Q2 Self-Reliance	How much you enjoy your own company and trust your own judgment
Q3 Perfectionism	Whether you need to rely on structure rather than leaving things to chance
Q4 Tension	How easily situations can cause you frustration
	·

MBTI Step I European Data Supplement

Each of the Primary Factors also contributes to one or more of the five 'Global Factors'. These are:

16PF Global Factor	Description
Extraversion	This is about the extent to which an individual wants to be with or around other people, as opposed to spending time on their own, and the amount of energy they will invest in initiating and maintaining social relationships
Independence	This refers to an individual's style of self- expression and persuasion, and the extent to which they will want to go their own way/take charge of situations as opposed to cooperating and collaborating
Tough-Mindedness	This is about the extent to which an individual will experience the world in concrete, logical, unsentimental terms as opposed to paying attention to emotions, intuition and other, more subjective aspects
Self-Control	This is about how an individual structures and orders their life, the extent to which they control their impulses, their level of self-discipline, and therefore how predictable their behaviour is
Anxiety	This refers to the way that an individual manages the pressures and stresses in their life. It may refer to their general state of mind or reflect what is going on in their life at the time

 $\mathsf{MBTI}^{\mathbb{R}}$ Step I^{m} instrument

European Data Supplement

Finnish

January 2009

Contents

Introduction	146
Type distribution	147
OPPassessment data (representative Finnish-speaking profession	onal
and managerial sample)	148
Internal consistency reliability	149
Intercorrelations between MBTI dimensions	150
Validity: the accuracy of the Finnish MBTI Step I instrument in	
predicting best-fit Type	151
Group differences in Type	151
Gender	151
Age	152
Occupational level	
Education	
Work area	154
Nationality	154
Employment status	154
Appendix 1: Sample description	
Sample 1: Data from OPPassessment (representative Finnish-	
speaking professional and managerial sample)	156

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner.

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

[©] Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

[®] MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 $^{^{\}text{TM}}$ Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 $[\]otimes$ OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. $^{\text{TM}}$ OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Introduction

Data collected from the Finnish electronic version of the MBTI Step I questionnaire were analysed to produce the findings in this chapter. A brief description of the sample is given below, and further details are provided in Appendix 1.

• The sample consisted of 665 individuals who completed the MBTI Step I questionnaire in Finnish via the OPPassessment system between launch of the Finnish version in May 2007 and mid-2008. This sample is considered to be representative of the groups of people with whom the Finnish MBTI instrument has been and will be used for applications such as management development, coaching, counselling and teambuilding. As such, it is likely to represent a cross-section of the Finnish-speaking professional and managerial population.

The results of the analyses are outlined below.

 $^{^{\}rm 100}$ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via email and/or completed online.

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. Opposite is a Type table for the Finnish sample described on the previous page.

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group. An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is underrepresented. Asterisks are used to denote whether the over- or underrepresentations are statistically significant, based on the results of chisquare analysis. ¹⁰¹

Ideally, the Type distribution from a large representative sample of the Finnish population would be used to calculate SSRs in this data supplement. However, such a sample does not currently exist. In its place, SSRs have been calculated using Type data from the UK general population (Kendall, 1998), which can be justified by the fact that Type distributions for comparable Finnish and British groups, such as managers and professionals, are similar. Evidence (eg Hackston and Kendall, 2004; Quenk et al., 2004; Kirby, Kendall and Barger, 2007) does suggest that although Type-related behaviours vary a good deal from country to country and from culture to culture, the frequencies of underlying MBTI Types do not.

 $^{^{101}}$ Chi-square analysis (often abbreviated to $\chi^2)$ is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the UK general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each Type within a particular sample differs significantly from the proportion of people reporting the same Type within the reference group.

OPPassessment data (representative Finnish-speaking professional and managerial sample)

Table 5.1: Type table for OPPassessment data (reported Type, n=665)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=73	n=18	n=5	n=46	E	477	71.7%**
11.0%	2.7%	0.8%	6.9%	1	188	28.3%**
SSR=0.80	SSR=0.21**	SSR=0.44	SSR=4.91**			
				S	354	53.2%**
ISTP	ISFP	INFP	INTP	N	311	46.8%**
n=17	n=3	n=2	n=24		•	.0.070
2.6%	0.5%	0.3%	3.6%	Т	551	82.9%**
SSR=0.40**	SSR=0.07**	SSR=0.09**	SSR=1.47	F	114	17.1%**
ESTP	ESFP	ENFP	ENTP	'		17.170
n=25	n=7	n=18	n=74	J	495	74.4%**
3.8%	1.1%	2.7%	11.1%	P	170	25.6%**
SSR=0.65*	SSR=0.12**	SSR=0.43**	SSR=4.04**] '	170	20.070
ESTJ	ESFJ	ENFJ	ENTJ			
n=174	n=37	n=24	n=118			
26.2%	5.6%	3.6%	17.7%			
SSR=2.51**	SSR=0.44**	SSR=1.31	SSR=6.04**			

^{*}Difference significant at p<0.05, based on chi-square results.

The most common single Type preference is ESTJ (26% of the total), followed by ENTJ (18%); this is a common finding with managerial groups in other countries. The SSR results suggest that, in comparison to the general population, those with preferences for NT are over-represented, and those with preferences for SF are under-represented. Again, this is a common finding with managerial groups.

^{**}Difference significant at p<0.01, based on chi-square results.

Internal consistency reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. Internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for the Finnish OPPassessment sample are shown in Table 5.2.

Table 5.2: Internal consistency reliability

Dimension	Coefficient
	alpha
E-I	0.86
S-N	0.78
T–F	0.78
J_P	0.80

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. On this basis, all of the dimensions of the questionnaire show good reliability. In addition, the alpha coefficients have been found to be consistent across different age groups and across males and females.

149

¹⁰² For example, see Nunnally (1978) or Kline (2000).

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire.

The intercorrelations between dimensions amongst the OPPassessment sample are shown in Table 5.3. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores. ¹⁰³.

Table 5.3: Intercorrelations between dimensions

	E-I	S-N	T–F	J–P
E-I		-0.14**	-0.11**	0.00
S-N			-0.01	0.42**
T-F				0.08*
J-P				

Significant at: *p<0.05, **p<0.01.

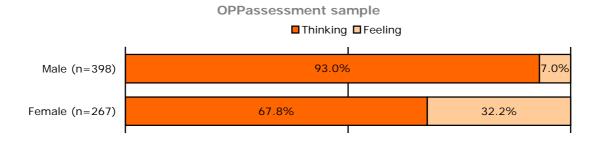
Although statistically significant, only very low correlations were found between most of the dimensions. The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving.

150

¹⁰³ Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

Validity: the accuracy of the Finnish MBTI Step I instrument in predicting best-fit Type

At present, insufficient data have been collected for the Finnish language version to be able to report any best-fit validity results.


Group differences in Type

Various Types of demographic information were collected for the OPPassessment sample. The relationship of MBTI Type to each of these factors is described below.

Gender

Most groups who take the MBTI questionnaire show a significant gender difference on the Thinking-Feeling dimension, and this is the case for the group in this study, as shown in Figure 5.1. 104

Figure 5.1: Gender differences on the T–F dimension

When compared with the T-F distribution in the combined sample, Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women (although even amongst women in this group there are more individuals with a preference for Thinking than for Feeling). This effect has been found many times with many different versions of the instrument in a number of different cultures.

For this group, there were also significant gender differences on the Extraversion–Introversion 105 and Sensing–iNtuition 106 dimensions, as shown in Figures 5.2 and 5.3. Introversion and iNtuition preferences are both over-represented amongst men and Extraversion and Sensing preferences are both over-represented amongst women.

 $^{^{104} \}chi^2 = 71.30$; significant at p<0.001.

 $[\]chi^2$ = 5.61; significant at p<0.05. χ^2 = 8.95; significant at p<0.01.

Figure 5.2: Gender differences on the E-I dimension

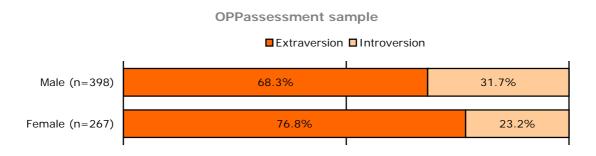
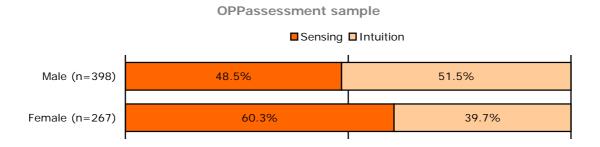



Figure 5.3: Gender differences on the S–N dimension

Age

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

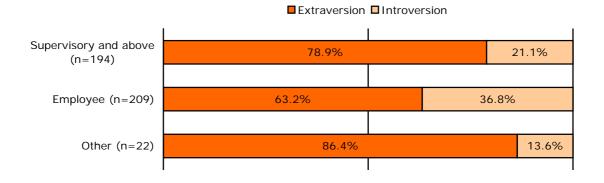
The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, for Sensing versus iNtuition, for Thinking versus Feeling and for Judging versus Perceiving. The OPPassessment sample showed a statistically significant relationship between age and one of the dimensions, ¹⁰⁷ as shown in Table 5.4. The mean age of people with a preference for iNtuition was approximately one and a half years higher than of those with a preference for Sensing.

¹⁰⁷ Independent-samples t-test; significant at p<0.05.

Table 5.4: Significant mean age differences

	Sensing	iNtuition	Difference	Significance
Mean age	37.31	38.85	1.54	*
(years)				

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.


Occupational level

Previous research in other countries has demonstrated that individuals in higher level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower level jobs (Quenk, Hammer and Majors, 2004).

Although occupational-level data were captured for the Finnish sample, the number of people in some of the categories was too small to allow a full analysis. Therefore, individuals were split into two categories, 'employee' and 'supervisory and above'. These categories were used for the analysis. Significant differences were found between the two groups on two dimensions, Extraversion–Introversion and Thinking–Feeling.

The data suggest that individuals in more senior positions are most likely to have a preference for Extraversion and for Thinking than those in more junior positions, as shown in Figures 5.4 and 5.5.

Figure 5.4: Extraversion–Introversion and occupational level

 $^{^{108}}$ $\chi^2 = 11.99$; significant at p<0.001.

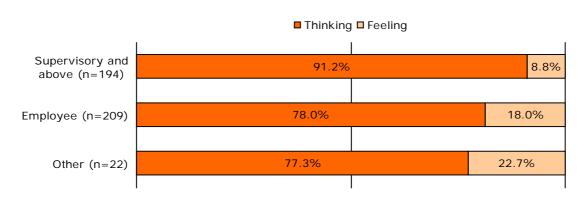


Figure 5.5: Thinking–Feeling and occupational level

Education

Specific educational qualifications were not available for the OPPassessment sample; however, the age at which individuals left full-time education was. There was found to be a link between one of the dimensions and the age at which individuals left full-time education. On average, people with a preference for iNtuition left education approximately nine months later than those with a preference for Sensing.

Work area

Previous research into MBTI Type suggests that an individual's Type influences their choice of career (Hammer, 1998), and indeed there is often found to be a statistically significant relationship between MBTI dimensions and job Type. However, at this stage, for the data we have collected there are insufficient numbers of people in each work area category for the analyses to be conducted. This work will be conducted when more data become available.

Nationality

For the OPPassessment group, information on nationality was available. Ninety-seven per cent of the group were Finnish, with the remaining 3% split amongst other European nationalities. No other nationality was represented in sufficiently large numbers for an analysis of Type differences by nationality to be conducted.

Employment status

Employment status has often been found to show a relationship with MBTI dimensions in other language versions. However, amongst the

154

 $^{^{109}}$ $\chi^2 = 13.39$; significant at p<0.001.

Finnish sample 98% of the group reported that they worked full-time. There were insufficient numbers of people who worked part-time or were self employed for any group-level analyses to be conducted. When additional data become available it will be possible to conduct this analysis.

Appendix 1: Sample description

Sample 1: Data from OPPassessment (representative Finnishspeaking professional and managerial sample)

This sample consists of 665 individuals who completed the MBTI Step I instrument in Finnish via the OPPassessment system between launch of the Finnish version in May 2007 and mid-2008. Sixty per cent of the respondents were male and 40% were female. Age ranged from 23 to 66 years, with a mean of 38 and a median of 36.

Nationality was disclosed by 82% of respondents. Of these, 97% were Finnish. No other individual nationality was represented in large numbers.

Nationality	Percentage
Finnish	97.4%
Other	2.6%

The majority of the group were in full-time employment:

Employment status	Percentage
Full-time	98.0%
Part-time	1.1%
Self-employed	0.9%

Many of the group were of managerial level or above, although the largest single group was employee level (49.2%):

Occupational level	Percentage
Top level	1.2%
Senior executive	2.6%
Upper middle management	7.1%
Middle management	17.6%
First level	17.2%
management/supervisor	
Employee	49.2%
Other	5.2%

A range of work areas were represented:

Work area (job type)	Percentage
Research and development	25.8%
IT	19.6%
Science, engineering	10.0%
HR, training, guidance	8.9%
Admin or secretarial	7.9%
Sales, customer service	7.4%
Finance	3.6%
Skilled operative	1.4%
Business services	1.2%
Education	0.5%
Land, sea or air transport	0.2%
Other private sector	7.2%
Other public sector	0.7%
Other	5.5%

MBTI[®] Step I[™] instrument

European Data Supplement

French

January 2009

Contents

Introduction	
Type distribution	. 161
OPPassessment data (representative French-speaking profession	nal
and managerial sample)	. 162
Management development programme participants	. 163
MBTI qualifying training course delegates	. 164
Business studies students	. 165
Internal consistency reliability	. 167
Intercorrelations between MBTI dimensions	. 168
Best-fit validity: the accuracy of the French MBTI Step I instrumen	t in
predicting best-fit Type	. 169
Group differences in Type	. 171
Gender	. 171
Age	.172
Occupational level	. 172
Education	. 174
Work area	. 174
Nationality	. 177
Employment status	. 179
Appendix 1: Sample descriptions	. 180
Sample 1: Data from OPPassessment (representative French-	
speaking professional and managerial sample)	. 180
Sample 2: Management development programme participants	. 181
Sample 3: Delegates on French MBTI qualifying training courses	181
Sample 4: Business studies students	. 183

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner.

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

[©] Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

[®] MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 $^{^{\}text{TM}}$ Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

[®] OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. ™ OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Introduction

Data from four different samples were analysed to produce the findings in this chapter. A brief description of each sample is given below. Further details of the samples are provided in Appendix 1.

- A group of 8,038 individuals who completed the MBTI Step I questionnaire in French via the OPPassessment system between 2004 and mid-2008. 110 This sample is considered to be representative of the groups of people with whom the French MBTI instrument has been and will be used for applications such as management development, coaching, counselling and teambuilding. As such, it is likely to represent a cross-section of the European French-speaking professional and managerial population.
- A sample of 263 French participants on management development programmes at Ashridge Business School, run between 2000 and 2003. 111
- A sample of 612 delegates on MBTI qualifying training workshops held in France from January 2002 to March 2005.
- A group of 363 business studies students from two centres (Lille and Nice) who completed the MBTI questionnaire for research purposes and as part of their own development.

The results of the analyses are outlined below.

¹¹⁰ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via

email and/or completed online.

111 Data reproduced with kind permission from Ashridge Business School.

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. Below are Type tables for the three French samples described on the previous page.

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group. An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is underrepresented. Asterisks are used to denote whether the over- or underrepresentations are statistically significant, based on the results of chisquare analysis. 112

Ideally, the Type distribution from a large representative sample of the French population would be used to calculate SSRs in this data supplement. However, such a sample does not currently exist. In its place, SSRs have been calculated using Type data from the UK general population (Kendall, 1998), which can be justified by the fact that Type distributions for comparable French and British groups, such as managers and professionals, are similar. Evidence (eg Hackston and Kendall, 2004; Quenk et al., 2004; Kirby, Kendall and Barger, 2007) does suggest that although Type-related behaviours vary a good deal from country to country and from culture to culture, the frequencies of underlying MBTI Types do not.

-

 $^{^{112}}$ Chi-square analysis (often abbreviated to $\chi^2)$ is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the UK general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each Type within a particular sample differs significantly from the proportion of people reporting the same Type within the reference group.

OPPassessment data (representative French-speaking professional and managerial sample)

Table 6.1: Type table for OPPassessment data (reported Type, n=8,038)

				-		
ISTJ	ISFJ	INFJ	INTJ	Type	n	%
n=1010	n=314	n=149	n=359	E	5179	64.4%**
12.6%	3.9%	1.9%	4.5%	1	2859	35.6%**
SSR=0.92	SSR=0.31**	SSR=1.08	SSR=3.17**			
LCTD	LCED	LNED	LNITD	S	4770	59.3%**
ISTP	ISFP	INFP	INTP	N	3268	40.7%**
n=292	n=133	n=222	n=380			
3.6%	1.7%	2.8%	4.7%	Т	5596	69.6%**
SSR=0.57**	SSR=0.27**	SSR=0.87	SSR=1.93**	F	2442	30.4%**
ESTP	ESFP	ENFP	ENTP] '	2112	30.170
n=446	n=292	n=447	n=563	J	5263	65.5%*
5.5%	3.6%	5.6%	7.0%	P	2775	34.5%*
SSR=0.95	SSR=0.42**	SSR=0.88	SSR=2.54**		_,,,	00 / 0
ESTJ	ESFJ	ENFJ	ENTJ			
n=1724	n=559	n=326	n=822			
21.4%	7.0%	4.1%	10.2%			
SSR=2.06**	SSR=0.55**	SSR=1.47*	SSR=3.48**			

^{*}Difference significant at p<0.05, based on chi-square results.

The most common single Type preference is ESTJ (21% of the total); this is a common finding with managerial groups in other countries. The SSR results suggest that, in comparison with the UK general population, those with preferences for NT are over-represented, and those with preferences for SF are under-represented. Again, this is a common finding with managerial groups.

^{**}Difference significant at p<0.01, based on chi-square results.

Management development programme participants

Table 6.2: Type table for management development programme participants (reported Type, n=263)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=44	n=6	n=2	n=29	E	155	58.9%*
16.7%	2.3%	0.8%	11.0%	1	108	41.1%*
SSR=1.22	SSR=0.18**	SSR=0.44	SSR=7.83**			
ISTP	ISFP	INFP	INTP	S	152	57.8%**
n=8	n=3	n=9	n=7	N	111	42.2%**
3.0%	1.1%	3.4%	2.7%	_	100	75 20/ **
SSR=0.47*	SSR=0.19**	SSR=1.08	SSR=1.09	T F	198 65	75.3%** 24.7%**
ESTP	ESFP	ENFP	ENTP		03	24.770
n=20	n=5	n=17	n=19	J	175	66.5%*
7.6%	1.9%	6.5%	7.2%	P	88	33.5%*
SSR=1.31	SSR=0.22**	SSR=1.03	SSR=2.62**			
ESTJ	ESFJ	ENFJ	ENTJ			
n=54	n=12	n=11	n=17			
20.5%	4.6%	4.2%	6.5%			
SSR=1.97**	SSR=0.36**	SSR=1.52	SSR=2.20**			

The Type distribution is similar to that for the OPPassessment sample described earlier, with ESTJ (21% of the total) being the most common single Type preference, and NT being over-represented and SF being under-represented.

^{*}Difference significant at p<0.05, based on chi-square results. **Difference significant at p<0.01, based on chi-square results.

MBTI qualifying training course delegates

Reported Type and best-fit Type results from the MBTI instrument were available for almost the entire sample. In the remaining cases, either best-fit or reported Type was provided.

Table 6.3: Type tables for training course delegates

Reported Type (n=597)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=30	n=22	n=36	n=35	E	349	58.5%**
5.0%	3.7%	6.0%	5.9%	1	248	41.5%**
SSR=0.36**	SSR=0.29**	SSR=3.53**	SSR=4.21**			
LOTE	LOED	INIED	LAITO	S	187	31.3%**
ISTP	ISFP	INFP	INTP	N	410	68.7%**
n=4	n=8	n=76	n=37			
0.7%	1.3%	12.7%	6.2%	Т	229	38.4%**
SSR=0.11**	SSR=0.21**	SSR=3.97**	SSR=2.58**	F	368	61.6%**
ESTP	ESFP	ENFP	ENTP] '	300	01.070
n=22	n=26	n=106	n=35	J	283	47.4%**
3.7%	4.4%	17.8%	5.9%	P	314	52.6%**
SSR=0.64*	SSR=0.51**	SSR=2.83**	SSR=2.11**	ļ ·	011	02.070
ESTJ	ESFJ	ENFJ	ENTJ			
n=35	n=40	n=54	n=31			
5.9%	6.7%	9.0%	5.2%			
SSR=0.57**	SSR=0.53**	SSR=3.21**	SSR=1.79**			

Best-fit Type (n=578)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=20	n=26	n=40	n=35	E	312	54.0%
3.5%	4.5%	6.9%	6.1%	1	266	46.0%
SSR=0.26**	SSR=0.35**	SSR=4.06**	SSR=4.36**			
				S	160	27.7%**
ISTP	ISFP	INFP	INTP	N	418	72.3%**
n=7	n=15	n=88	n=35	' '	110	72.070
1.2%	2.6%	15.2%	6.1%	Т	187	32.4%**
SSR=0.19**	SSR=0.43**	SSR=4.75**	SSR=2.54**	F	391	67.6%**
ESTP	ESFP	ENFP	ENTP] '	371	07.070
n=16	n=26	n=118	n=39	ر [234	40.5%**
2.8%	4.5%	20.4%	6.7%	P	344	59.5%**
SSR=0.48**	SSR=0.52**	SSR=3.24**	SSR=2.39**	ļ ·	011	07.070
ESTJ	ESFJ	ENFJ	ENTJ			
n=16	n=34	n=44	n=19			
2.8%	5.9%	7.6%	3.3%			
SSR=0.27**	SSR=0.47**	SSR=2.71**	SSR=1.14			

For both tables above: *Difference significant at p<0.05, based on chi-square results. **Difference significant at p<0.01, based on chi-square results.

The most frequent Types are ENFP (20%) and INFP (15%). Overall, the distribution of reported Types in the group reveals preferences for iNtuition and Feeling and, to a lesser extent, preferences for

Extraversion and Perceiving. These trends are generally slightly more pronounced when best-fit Type is examined. Compared with the UK general population, those with a preference for iNtuition are particularly over-represented.

Similar results (especially with regard to iNtuition) have been found with other groups of MBTI practitioners and MBTI qualifying training course delegates.

Business studies students

Table 6.4: Type tables for business studies students

Reported Type (n=363)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=23	n=13	n=21	n=19	E	196	54.0%
6.3%	3.6%	5.8%	5.2%	1	167	46.0%
SSR=0.46**	SSR=0.28**	SSR=3.41**	SSR=3.71**			
ISTP	ISFP	INED	INTP	S	137	37.7%**
	1	INFP	+	N	226	62.3%**
n=16	n=12	n=25	n=38			
4.4%	3.3%	6.9%	10.5%	T	174	47.9%
SSR=0.69	SSR=0.54*	SSR=2.16**	SSR=4.38**	F	189	52.1%
ESTP	ESFP	ENFP	ENTP] '	107	32.170
n=13	n=12	n=52	n=22	J	173	47.7%**
3.6%	3.3%	14.3%	6.1%	P	190	52.3%**
SSR=0.62	SSR=0.38**	SSR=2.27**	SSR=2.18**		.,0	02.070
ESTJ	ESFJ	ENFJ	ENTJ			
n=23	n=25	n=29	n=20]		
6.3%	6.9%	8.0%	5.5%			
SSR=0.61*	SSR=0.55**	SSR=2.86**	SSR=1.90*			

^{*}Difference significant at p<0.05, based on chi-square results.

^{**}Difference significant at p<0.01, based on chi-square results.

Best-fit Type (n=363)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=28	n=19	n=20	n=25	E	181	49.9%
7.7%	5.2%	5.5%	6.9%	1	182	50.1%
SSR=0.56**	SSR=0.41**	SSR=3.24**	SSR=4.93**			
LCTD	LCED	LNIED	LAITD	S	141	38.8%*
ISTP	ISFP	INFP	INTP	N	222	*
n=15	n=10	n=35	n=30			61.2%*
4.1%	2.8%	9.6%	8.3%	T	164	*
SSR=0.64	SSR=0.46*	SSR=3.00**	SSR=3.46**	F	199	
ESTP	ESFP	ENFP	ENTP] '	177	45.2%
n=12	n=13	n=57	n=22	J	169	54.8%
3.3%	3.6%	15.7%	6.1%	P	194	0070
SSR=0.57	SSR=0.41**	SSR=2.49**	SSR=2.18**]		46.6%*
ESTJ	ESFJ	ENFJ	ENTJ			*
n=21	n=23	n=22	n=11]		53.4%*
5.8%	6.3%	6.1%	3.0%			*
SSR=0.56**	SSR=0.50**	SSR=2.18**	SSR=1.03			

^{*}Difference significant at p<0.05, based on chi-square results.

For both reported and best-fit Type, there is a clear majority of people with preferences for iNtuition; ENFP is the most common whole-Type preference in both cases. Compared with the UK general population reference group, those with a preference for iNtuition are over-represented. This is typical of student groups and of those who have been educated to a higher level (for example, see Casas, 1990; MacDaid et al., 1991).

^{**}Difference significant at p<0.01, based on chi-square results.

Internal consistency reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. Internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for the French samples are shown in Table 6.5.

Table 6.5: Internal consistency reliability

Dimension	Coefficient alpha							
	OPPassessment	MBTI qualifying delegates	Business students					
E-I	0.84	0.87	0.83					
S-N	0.79	0.82	0.74					
T–F	0.75	0.79	0.71					
J–P	0.80	0.86	0.81					

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. ¹¹³ On this basis, all the dimensions of the questionnaire show good reliability in all groups. In addition, the alpha coefficients have been found to be consistent across different age groups and across males and females.

¹¹³ For example, see Nunnally (1978) or Kline (2000).

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire.

The intercorrelations between dimensions amongst the OPPassessment sample are shown in Table 6.6. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores. 114

Table 6.6: Intercorrelations between dimensions

	E-I	S-N	T-F	J-P
E-I		-0.05**	-0.08**	0.01
S-N			0.14**	0.38**
T-F				0.25**
J-P				

^{**}Significant at p<0.01.

Although statistically significant, only very low correlations were found between most of the dimensions. The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving. A smaller, but notable, correlation was also found between T–F and J–P. A preference for Thinking is likely to be associated with a preference for Judging, and a preference for Feeling is likely to be associated with a preference for Perceiving.

¹¹⁴ Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

Best-fit validity: the accuracy of the French MBTI Step I instrument in predicting best-fit Type

The purpose of the MBTI instrument is to help individuals to establish their validated or 'best-fit' psychological Type. A key measure of the validity of the instrument is, therefore, how well the results relate to best-fit (validated) Type. These data are useful to practitioners in knowing how typically accurate the reported result is likely to be.

Best-fit data are available for two of the samples. The business studies students were given group feedback on their results, and best-fit Type data were collected alongside reported Type results. The MBTI qualifying workshop delegates established their best-fit Type as part of their training course, and this was collected for almost the entire sample (578 people).

Table 6.7 presents the results of the analysis comparing reported with best-fit Type. The French MBTI Step I questionnaire performs in a very similar way to other European language versions, and there is very good evidence for the accuracy of the instrument. In between 60% and 70% of cases, a respondent's reported Type will match their best-fit Type, and in 93% of cases at least three of the four preferences will match.

Table 6.7: Match of reported and best-fit Type

	MBTI qualifying training course delegates (n=578)		Business (n=3	
Agrees with all four letters	67.8%		62.3%	02.40/
Agrees with three letters	25.3%	93.1%	31.1%	93.4%
Agrees with two letters	6.1%		4.9%	
Agrees with one letter	0.7%	6.9%	1.7%	6.6%
Agrees with no letters	0.2%		0.0%	

	Percentage agreement				
Dimension	Training	Business			
	delegates	studies			
E-I	90.1%	89.8%			
S-N	91.0%	91.6%			
T–F	88.3%	86.8%			
J_P	90.6%	86.8%			

Two further analyses were carried out to investigate the validity and accuracy of the questionnaire. Firstly, MBTI qualifying training course delegates were asked how confident they felt about each of their best-fit preferences (on a scale of 1 to 5, where 5 indicated the highest degree of confidence). For every dimension, over 80% of the group reported a rating of either 4 or 5, showing they were confident about

their Type, providing further support for the validity of the MBTI approach. Detailed results are shown in Table 6.8.

Table 6.8:	Degree of	f confidence	in	results
------------	-----------	--------------	----	---------

Degree of	P	Percentage of group					
confidence	E-I	S-N	T-F	J-P			
5 (highest)	65%	61%	58%	63%			
4	19%	23%	23%	22%			
3	11%	10%	14%	10%			
2	5%	4%	3%	3%			
1 (lowest)	1%	2%	2%	2%			
% at 4 or above	84%	84%	81%	85%			

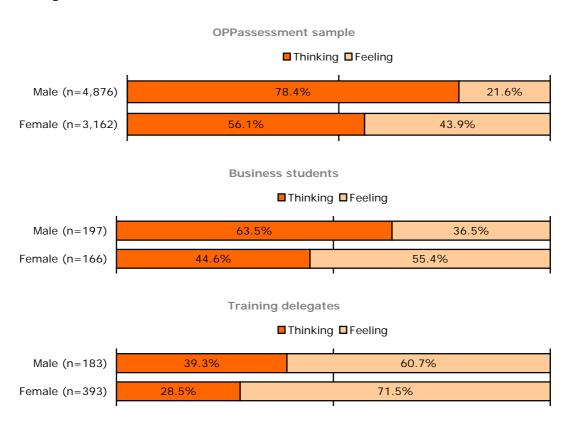
Secondly, item-level data from the business students sample were used to re-calculate prediction ratios for each item. From these prediction ratios, revised item weightings were derived, 115 which were then applied to the data to produce revised reported Types for each person. Each person's reported Type was then compared with their best-fit Type. The results showed no improvement over the level of agreement achieved using the existing Step I item weightings, and a high level of agreement between the new weightings and the standard Step I item weightings, which were applied across all Step I European language versions. There was therefore no evidence to suggest that a different scoring system should be applied to the MBTI Step I instrument in France.

In summary, there is good evidence for the validity of the French MBTI Step I instrument. Specifically:

- There is a high level of agreement between best-fit and reported Type, as high as for the English language version.
- Respondents are overwhelmingly confident about their results.
- There is no evidence that a scoring algorithm specifically for the French version would improve the accuracy of the instrument.

170

¹¹⁵ For a description of how prediction ratios are derived and then used to devise scoring weights, see Myers and McCaulley (1985, pp. 146–7).


Group differences in Type

Across three of the four samples, a variety of different demographic information was collected. The relationship of MBTI Type to each of these factors is described below.

Gender

Across countries, most groups who complete the MBTI questionnaire show a significant gender difference on the Thinking–Feeling dimension, and this is the case for the three groups in this study, as shown in Figure 6.1. 116

Figure 6.1: Gender differences on the T-F dimension

When compared with the T–F distribution in the combined sample, Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women across the groups. This effect has been found many times with many different language versions of the instrument in a number of different cultures. It is also worth noting from these data that the distributions vary widely across groups, with the OPPassessment sample tending towards a preference

¹¹⁶ OPPassessment sample: χ^2 =452.29; significant at p<0.001. Business students: χ^2 =12.96; significant at p<0.001. Training delegates: χ^2 =6.76; significant at p<0.01.

MBTI Step I European Data Supplement

for Thinking for both men and women, and the training delegates tending towards a preference for Feeling for both men and women.

Age

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, for Sensing versus iNtuition, for Thinking versus Feeling and for Judging versus Perceiving. However, none of the French samples showed a statistically significant and meaningful relationship between Type and age.

Occupational level

Previous research in other countries has demonstrated that individuals in higher level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower level jobs (Quenk, Hammer and Majors, 2004).

The same relationship between iNtuition and Thinking and occupational level was found in the OPPassessment sample. Those with preferences for iNtuition and Thinking are over-represented at a higher level, as shown in Figures 6.2 and 6.3.

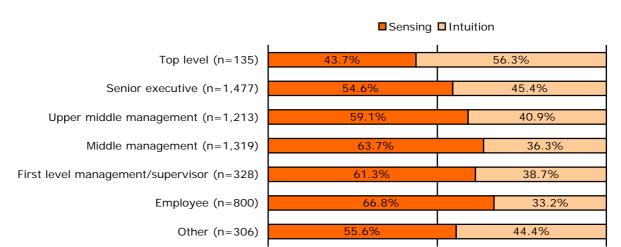
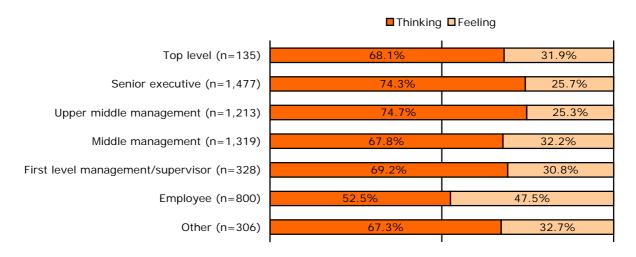



Figure 6.2: Sensing-iNtuition¹¹⁷ and occupational level (OPPassessment data)

Figure 6.3: Thinking–Feeling¹¹⁸ and occupational level (OPPassessment data)

Note also that in this data set as a whole, preferences for iNtuition and Thinking are over-represented in comparison with the (UK) general population.

In the MBTI qualifying training sample, a relationship only between Thinking and occupational level was found (Figure 6.4).

 $^{^{117}}_{118}\,\chi^2{=}\,58.00;$ significant at p<0.001. $^{118}_{\chi^2{=}\,140.42;}$ significant at p<0.001.

■ Thinking ■ Feeling CEO/Managing director 52.2% 47.6% (n=23)Senior executive (n=85) 37.6% 62.4% Executive (n=158) 39.2% 60.8% Technician/Supervisor 76.7% 23.3% (n=30)Employee (n=12) 100.0% Professional/Consultant 72.6% 27.4% (n=226)

Figure 6.4: Thinking–Feeling and occupational level¹¹⁹ (MBTI qualifying training course delegates)

Education

Specific educational qualifications were not collected for the OPPassessment sample; however, the age at which individuals left full-time education was. Those who left full-time education at an older age were significantly more likely to have preferences for iNtuition, ¹²⁰ Thinking ¹²¹ and Perceiving. ¹²² However, whilst statistically significant, the differences were very small in real terms.

The MBTI qualifying training course delegate data show a small but statistically significant tendency¹²³ for those at an educational level of Bac +5 (ie five years of higher education after obtaining the Baccalauréat qualification) and above to be more likely to have a Perceiving preference than those at the Bac +3 and +4 level.

Analysis by education level was not carried out for the business student sample.

Work area

Previous research into MBTI Type suggests that an individual's Type influences their choice of career (Hammer, 1998), and indeed the data in this chapter show that there is a statistically significant relationship between each dimension and work area. In the figures that follow, categories have been re-ordered according to the percentage of E, S, T

 $^{^{119}\}chi^2$ =24.39; significant at p<0.01. Note: in this figure only those roles with a total sample of ten or more are shown.

¹²⁰ Independent-samples t-test; t=-3.884, significant at p<0.001.

¹²¹ Independent-samples t-test; t=-4.659, significant at p<0.001.

Independent-samples t-test; t=-2.464, significant at p<0.05.

 $^{^{123}\}chi^2 = 11.23$; df=5, significant at p<0.05.

or J, and work areas with fewer than 100 respondents have been omitted (as well as undefined work areas such as 'Other').

Figure 6.5: Extraversion-Introversion and work area

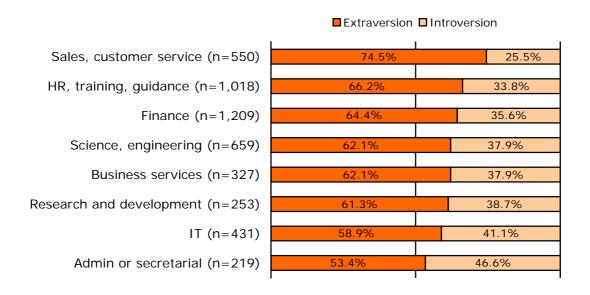
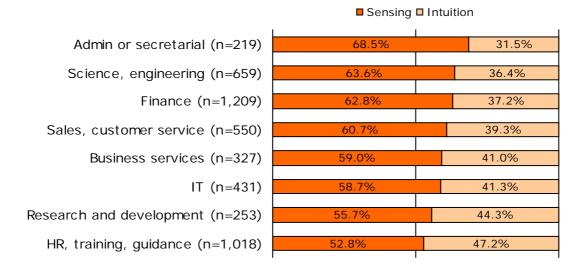



Figure 6.6: Sensing-iNtuition and work area

 $^{^{124}~\}chi^2{=}55.85;$ significant at p<0.001. $^{125}~\chi^2{=}62.07;$ significant at p<0.001.

Figure 6.7: Thinking-Feeling 126 and work area

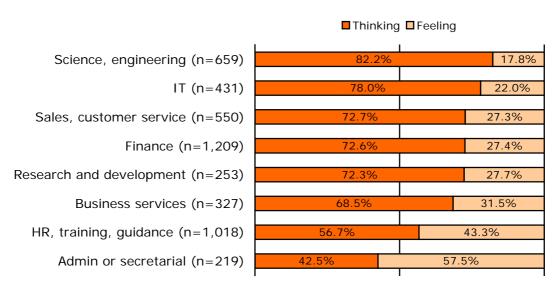
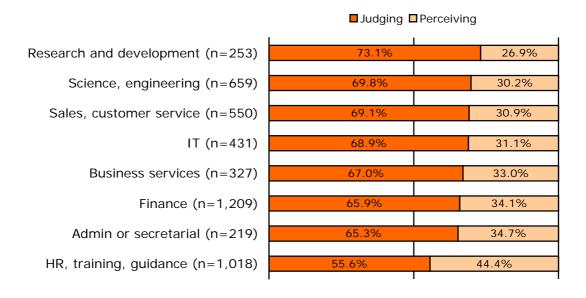



Figure 6.8: Judging-Perceiving 127 and work area

 $^{^{126}}$ $\chi^2 {=}\, 243.53;$ significant at p<0.001. 127 $\chi^2 {=}\, 75.62;$ significant at p<0.001.

Nationality

Information on nationality was available for the OPPassessment group. Although two-thirds of the group were French, two other nationalities (Belgian and Swiss) were also represented in large numbers (see Appendix 1 for details). Type tables for the three main nationalities are shown below, along with a table summarising the differences. Analysis suggested that the Belgian sub-group was significantly more likely 128 to have a Sensing preference than the French group, and that the French group were significantly more likely to have a Thinking preference than the Belgian¹²⁹ and Swiss¹³⁰ sub-groups.

Table 6.9: Type table for French respondents (reported Type, n=3,933)

				-		
ISTJ	ISFJ	INFJ	INTJ	Type	n	%
n=466	n=144	n=93	n=176	E	5,179	64.4%**
11.8%	3.7%	2.4%	4.5%	I	2,859	35.6%**
SSR=0.86	SSR=0.29**	SSR=1.38	SSR=3.18**			
				S	4,770	59.3%**
ISTP	ISFP	INFP	INTP	N	3,268	40.7%**
n=156	n=57	n=112	n=198	'	0,200	10.770
4.0%	1.4%	2.8%	5.0%	T	5,596	69.6%**
SSR=0.62**	SSR=0.24**	SSR=0.89	SSR=2.06**	F	2,442	30.4%**
ESTP	ESFP	ENFP	ENTP] '	2,112	30.170
n=221	n=152	n=208	n=308	J	5,263	65.5%*
5.6%	3.9%	5.3%	7.8%	P	2,775	34.5%*
SSR=0.97	SSR=0.44**	SSR=0.84	SSR=2.84**	'	2,770	31.370
ESTJ	ESFJ	ENFJ	ENTJ			
n=790	n=265	n=154	n=433			
20.1%	6.7%	3.9%	11.0%			
SSR=1.93**	SSR=0.53**	SSR=1.42*	SSR=3.75**			

^{*}Difference significant at p<0.05, based on chi-square results.

^{**}Difference significant at p<0.01, based on chi-square results.

 $^{^{128}}$ $\chi^2 =$ 11.72; significant at p<0.001. 129 $\chi^2 =$ 7.28; significant at p<0.01. 130 $\chi^2 =$ 19.27; significant at p<0.001.

Table 6.10: Type table for Belgian French-speaking respondents (reported Type, n=898)

ISTJ	ISFJ	INFJ	INTJ	Type	n	%
1313	1313	TIMED	INIJ	Type	n	70
n=117	n=32	n=13	n=36	E	593	66.0%**
13.0%	3.6%	1.4%	4.0%	I	305	34.0%**
SSR=0.95	SSR=0.28**	SSR=0.84	SSR=2.85**			
				S	570	63.5%**
ISTP	ISFP	INFP	INTP	N	328	36.5%**
n=33	n=14	n=24	n=36	' '	020	00.070
3.7%	1.6%	2.7%	4.0%	Т	586	65.3%**
SSR=0.57**	SSR=0.25**	SSR=0.84	SSR=1.64*	F	312	34.7%**
ESTP	ESFP	ENFP	ENTP] '	0.2	01.770
n=47	n=44	n=52	n=67	J	581	64.7%**
5.2%	4.9%	5.8%	7.5%	P	317	35.3%**
SSR=0.90	SSR=0.56**	SSR=0.92	SSR=2.71**		0.7	00.070
ESTJ	ESFJ	ENFJ	ENTJ			
n=192	n=91	n=42	n=58			
21.4%	10.1%	4.7%	6.5%			
SSR=2.06**	SSR=0.80	SSR=1.70*	SSR=2.20**			

^{*}Difference significant at p<0.05, based on chi-square results.

Table 6.11: Type table for Swiss French-speaking respondents (reported Type, n=534)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=59	n=34	n=4	n=16	E	348	65.2%**
11.0%	6.4%	0.7%	3.0%	I	186	34.8%**
SSR=0.81	SSR=0.50**	SSR=0.44	SSR=2.13*			
LCTD	ISFP	INFP	INTP	S	316	59.2%**
ISTP				N	218	40.8%**
n=20	n=10	n=14	n=29			
3.7%	1.9%	2.6%	5.4%	Т	323	60.5%**
SSR=0.58*	SSR=0.31**	SSR=0.82	SSR=2.22**	F	211	39.5%**
ESTP	ESFP	ENFP	ENTP] '	211	37.370
n=32	n=24	n=47	n=34]]	324	60.7%
6.0%	4.5%	8.8%	6.4%	P	210	39.3%
SSR=1.03	SSR=0.52**	SSR=1.40*	SSR=2.31**]	2.0	07.070
ESTJ	ESFJ	ENFJ	ENTJ			
n=89	n=48	n=30	n=44			
16.7%	9.0%	5.6%	8.2%			
SSR=1.60**	SSR=0.71*	SSR=2.04*	SSR=2.80**			

^{*}Difference significant at p<0.05, based on chi-square results.

^{**}Difference significant at p<0.01, based on chi-square results.

^{**}Difference significant at p<0.01, based on chi-square results.

Table 6.12: Summary of differences by nationality

	Е	I	S	N	Т	F	J	Р
French (n=3,933)	64%	36%	59%	41%	70%	30%	65%	35%
Belgian (n=898)	66%	34%	63%	37%	65%	35%	65%	35%
Swiss (n=534)	65%	35%	59%	41%	60%	40%	61%	39%

Employment status

Employment status (available for the OPPassessment sample) showed a relationship with the Sensing–iNtuition and Thinking–Feeling dimensions. Those who were self-employed were more likely than other groups to have a preference for iNtuition, ¹³¹ and those who worked part-time were more likely than other groups to have a preference for Feeling. ¹³² This is likely to be a gender effect; 89% of part-time workers were female, compared with 38% of the total group and 35% of full-time workers.

 $^{^{131}}$ $\chi^2{=}24.26;$ significant at p<0.001. 132 $\chi^2{=}113.95;$ significant at p<0.001.

Appendix 1: Sample descriptions

Sample 1: Data from OPPassessment (representative Frenchspeaking professional and managerial sample)

This sample consisted of 8,038 individuals who completed the MBTI Step I questionnaire in French via the OPPassessment system between January 2004 and June 2008. Sixty-one per cent of the respondents were male and 39% were female. Age ranged from 16 to 71 years, with a mean and median of 37.

Nationality was disclosed by 74% of respondents, two-thirds of whom were French:

Nationality	Percentage
French	65.7%
Belgian	15.0%
Swiss	8.9%
Italian	1.2%
Other	9.2%

The majority of the group were in full-time employment:

Employment status	Percentage	
Full-time	91.2%	
Part-time	5.5%	
Self-employed	2.0%	
Unemployed	1.1%	
Retired	0.1%	
Homemaker	0.1%	

The majority of the group were of managerial level or above:

Occupational level	Percentage
Top level	2.4%
Senior executive	26.5%
Upper middle management	21.7%
Middle management	23.6%
First level	5.9%
management/supervisor	
Employee	14.3%
Other	5.5%

A range of work areas were represented:

Work area (job type)	Percentage
Finance	21.6%
HR, training, guidance	18.2%
Science, engineering	11.8%
Sales, customer service	9.8%
IT	7.7%
Business services	5.8%
Research and development	4.5%
Admin or secretarial	3.9%
Health, social services, etc.	1.1%
Skilled operative	0.8%
Land, sea or air transport	0.7%
Education	0.5%
Leisure, personal service	0.4%
Military, police, prison, fire	0.2%
Unskilled operative	<0.1%
Other	7.4%
Other private sector	5.0%
Other public sector	0.7%

Sample 2: Management development programme participants

The sample consisted of 263 French participants on management development programmes at Ashridge Business School, run between 2000 and 2003. Eighty-four per cent of the group were male and 16% female. Age ranged from 26 to 58 years.

Sample 3: Delegates on French MBTI qualifying training courses

The sample consisted of 612 delegates on French MBTI training programmes from January 2002 to March 2005. Of this group, 416 (69%) were female and 189 (31%) male; age ranged from 24 to 63 years (with an average age of 42). The majority (563 people, 96% of those who answered the question) said that overall they were satisfied with their job.

MBTI Step I European Data Supplement

Most of the sample group (570 people, 93%) provided information on their job role; the majority categorised themselves as professionals/consultants (41%) or as managers or executives (49%):

Job role	n	%
CEO/Managing director	26	4.6
Managing executive	85	14.9
Executive	167	29.3
Technician/Supervisor	32	5.6
Employee	14	2.5
Skilled worker	0	0
Professional/Consultant	234	41.1
Student	1	0.2
Retired/Volunteer	2	0.4
Job-seeker	1	0.2
Craftsman/Retailer	2	0.4
Farmer	0	0
Unemployed	6	1.1

Just under three-quarters of the sample (445 people, 73%) also provided information on their area of work. Not surprisingly, most of these were in training and development (66%) or HR (21%):

Area of work	n	%
Top level management	27	6.1
Production	7	1.6
Purchasing	2	0.4
Sales/Marketing	8	1.8
Education/R&D	6	1.3
Administration/Legal	1	0.2
Finance	1	0.2
Accounting	1	0.2
IT	4	0.9
Management	93	20.9
HR/Training/Development	295	66.3

Almost all the sample (604 people, 99%) provided their educational background: 133

Level of education	n	%
CAP/BEP	1	0.2
< Bac	5	0.8
Bac	7	1.2
Bac + 1 & 2	31	5.1
Bac + 3 & 4	148	24.5
Bac + 5 and above	412	68.2

Sample 4: Business studies students

The sample consisted of 363 business studies students. Of these, 197 (54%) were female and 166 (46%) were male. Age ranged from 18 to 22 years, with a mean of 20 years.

¹³³ CAP: the certificat d'aptitude professionnelle is a vocational training qualification. BEP: the brevet d'études professionnelles is a certificate of professional education. Bac: the Baccalauréat is the examination taken before leaving school, usually at the age of 17 or 18. Bac +: the number of years of higher education after having obtained the Baccalauréat.

MBTI[®] Step I[™] instrument

European Data Supplement

German

January 2009

Contents

Introduction	. 186
Type distribution	. 187
OPPassessment data (representative German-speaking profession	onal
and managerial sample)	
General population sample	
Management development programme participants	
MBTI qualifying training course delegates	
MBTI practitioners	
Internal consistency reliability	
Intercorrelations between MBTI dimensions	
Validity: the accuracy of the German MBTI Step I instrument in	
predicting best-fit Type	. 197
Group differences in Type	. 199
Gender	. 199
Age	. 200
Occupational level	. 201
Education	. 202
Work area	. 202
Nationality	. 205
Employment status	. 207
Appendix 1: Sample descriptions	. 208
Sample 1: Data from OPPassessment (representative German-	
speaking professional and managerial sample)	. 208
Sample 2: General population	. 209
Sample 3: Management development programme participants	. 209
Sample 4: MBTI Qualifying training course participants	
Sample 5: MBTI practitioners	. 210

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner.

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

[©] Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

[®] MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 $^{^{\}text{TM}}$ Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 $[\]circledast$ OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. TM OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Introduction

Data from five different samples were analysed to produce the findings in this supplement. A brief description of each sample is given below. Further details of the samples are provided in Appendix 1.

- A group of 11,515 individuals who completed the MBTI Step I questionnaire in German via the OPPassessment system between 2004 and mid-2008. 134 This sample is considered to be representative of the groups of people with whom the German MBTI instrument has been and will be used for applications such as management development, coaching, counselling and teambuilding. As such, it is likely to represent a cross-section of the Germanspeaking professional and managerial population.
- A group of 228 individuals who completed a trial version of the MBTI questionnaire as part of the development of the Step II instrument. This sample was designed to be representative of the German general population.
- A sample of 687 German participants on management development programmes at Ashridge Business School, run between 2000 and 2003. 135
- A sample of 323 delegates on MBTI qualifying training workshops held in Germany between 2002 and 2006.
- A group of 110 MBTI practitioners who took part in a research study to look at the relationship between MBTI reported Type and best-fit Type.

The results of the analyses are outlined below.

¹³⁴ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via

email and/or completed online.

135 Data reproduced with kind permission from Ashridge Business School.

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. Below are Type tables for the three German samples described above.

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group. An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is underrepresented. Asterisks are used to denote whether the over- or underrepresentations are statistically significant, based on the results of chisquare analysis. 136

Ideally the Type distribution from a large representative sample of the German population would be used to calculate SSRs in this data supplement. However, such a sample does not currently exist. In its place, SSRs have been calculated using Type data from the UK general population (Kendall, 1998), which can be justified by the fact that Type distributions for comparable German and British groups, such as managers and professionals, are similar. Evidence (eg Hackston and Kendall, 2004; Quenk et al., 2004; Kirby, Kendall and Barger, 2007) does suggest that although Type-related behaviours vary a good deal from country to country and from culture to culture, the frequencies of underlying MBTI Types do not.

-

 $^{^{136}}$ Chi-square analysis (often abbreviated to $\chi^2)$ is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the UK general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each type within a particular sample differs significantly from the proportion of people reporting the same type within the reference group.

OPPassessment data (representative German-speaking professional and managerial sample)

Table 7.1: Type table for OPPassessment data (reported Type, n=11,515)

ISTJ	ISFJ	INFJ	INTJ	Type	n	%
n=1,431	n=201	n=125	n=641	E	8,240	71.6%**
12.4%	1.7%	1.1%	5.6%	1	3,275	28.4%**
SSR=0.91	SSR=0.14**	SSR=0.63*	SSR=3.95**			
				S	6,231	54.1%**
ISTP	ISFP	INFP	INTP	N	5,284	45.9%**
n=316	n=79	n=125	n=357	. •	0,20.	.0.,,,
2.7%	0.7%	1.1%	3.1%	T	9,288	80.7%**
SSR=0.43**	SSR=0.11**	SSR=0.34**	SSR=1.27	F	2,227	19.3%**
ESTP	ESFP	ENFP	ENTP		_,,	17.070
n=584	n=194	n=417	n=998	J	8,445	73.3%**
5.1%	1.7%	3.6%	8.7%	P	3,070	26.7%**
SSR=0.87	SSR=0.19**	SSR=0.57**	SSR=3.15**		-,	
ESTJ	ESFJ	ENFJ	ENTJ			
n=2,858	n=568	n=518	n=2,103			
24.8%	4.9%	4.5%	18.3%			
SSR=2.39**	SSR=0.39**	SSR=1.63**	SSR=6.22**			

^{*}Difference significant at p<0.05, based on chi-square results.

The most common single Type preference is ESTJ (25% of the total); this is a common finding with managerial groups in other countries. The SSR results suggest that, in comparison with the UK general population, those with preferences for NT are over-represented, and those with preferences for SF are under-represented. Again, this is a common finding with managerial groups.

^{**}Difference significant at p<0.01, based on chi-square results.

General population sample

Table 7.2: Type table for German general population sample (n=228)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=36	n=9	n=5	n=9	E	116	50.9%
15.8%	3.9%	2.2%	3.9%	1	112	49.1%
SSR=1.15	SSR=0.31**	SSR=1.29	SSR=2.79**			
				- S	123	53.9%**
ISTP	ISFP	INFP	INTP	N	105	46.1%**
n=17	n=7	n=15	n=14			
7.5%	3.1%	6.6%	6.1%	Т	154	67.5%**
SSR=1.17	SSR=0.51	SSR=2.06**	SSR=2.54**	Ė	74	32.5%**
ESTP	ESFP	ENFP	ENTP] ·	, ,	02.070
n=12	n=2	n=18	n=21	ر [122	53.5%
5.3%	0.9%	7.9%	9.2%	P	106	46.5%
SSR=0.91	SSR=0.10**	SSR=1.25	SSR=3.29**		100	10.070
ESTJ	ESFJ	ENFJ	ENTJ			
n=32	n=8	n=10	n=13			
14.0%	3.5%	4.4%	5.7%			
SSR=1.35	SSR=0.28**	SSR=1.57	SSR=1.97*			

^{*}Difference significant at p<0.05, based on chi-square results.

The most common single Type preference amongst this sample is ISTJ (16% of the total), closely followed by ESTJ (14%). ISTJ is also the most common single Type preference amongst the UK general population sample (14%), with ESTJ being the fourth most common (10%). Interestingly, ISFJ and ESFJ are considerably less common amongst this German sample (both 4%) than they are amongst the UK population sample (both 13%).

Overall, the SSR results suggest that, in comparison with the UK general population, those with preferences for NT are over-represented, and those with preferences for SF are under-represented. However, the reader should bear in mind that the German sample is considerably smaller than the UK sample, and therefore these findings should be treated with caution.

^{**}Difference significant at p<0.01, based on chi-square results.

Management development programme participants

Table 7.3: Type table for management development programme participants (reported Type, n=687)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=83	n=3	n=2	n=36	E	499	72.6%**
12.1%	0.4%	0.3%	5.2%	I	188	27.4%**
SSR=0.88	SSR=0.03**	SSR=0.17**	SSR=3.72**			
ISTP	ISFP	INFP	INTP	S	346	50.4%**
n=25		1		N	341	49.6%**
_	n=2	n=11	n=26			
3.6%	0.3%	1.6%	3.8%	T	598	87.0%**
SSR=0.57**	SSR=0.05**	SSR=0.50*	SSR=1.55	F	89	13.0%**
ESTP	ESFP	ENFP	ENTP		0,	.0.076
n=44	n=4	n=25	n=72	J	478	69.6%**
6.4%	0.6%	3.6%	10.5%	P	209	30.4%**
SSR=1.10	SSR=0.07**	SSR=0.58*	SSR=3.81**		_0,	000
ESTJ	ESFJ	ENFJ	ENTJ			
n=173	n=12	n=30	n=139			
25.2%	1.7%	4.4%	20.2%			
SSR=2.42**	SSR=0.14**	SSR=1.59*	SSR=6.89**			

^{*}Difference significant at p<0.05, based on chi-square results. **Difference significant at p<0.01, based on chi-square results.

The Type distribution is similar to that for the OPPassessment sample described earlier, with ESTJ (25% of the total) being the most common single Type preference, and NT being over-represented and SF being under-represented.

MBTI qualifying training course delegates

Reported Type and best-fit Type results from the MBTI instrument were available for almost the entire sample. In the remaining cases, either best-fit or reported Type was provided.

Table 7.4: Type tables for training course delegates

Reported Type (n=323)

ISTJ	ISFJ	INFJ	INTJ	Type	n	%
n=25	n=15	n=5	n=29	E	220	68.1%**
7.7%	4.6%	1.5%	8.9%	1	103	31.9%**
SSR=0.56**	SSR=0.36**	SSR=0.88	SSR=6.36**			
ISTP	ISFP	INFP	INTP	S	133	41.2%**
n=5	n=1	n=9	n=14	N	190	58.8%**
1.5%	0.3%	2.8%	4.3%			
SSR=0.23**	SSR=0.05**	SSR=0.88	SSR=1.79	T	202	62.5%**
ESTP	ESFP	ENFP	ENTP	F	121	37.5%**
n=16	n=8	n=31	n=33			
4.9%	2.5%	9.5%	10.1%	J	206	63.8%
SSR=0.84	SSR=0.29**	SSR=1.51*	SSR=3.61**	P	117	36.2%
ESTJ	ESFJ	ENFJ	ENTJ			
n=40	n=23	n=29	n=40			
12.3%	7.1%	8.9%	12.3%			
SSR=1.18	SSR=.56**	SSR=3.18**	SSR=4.24**			

Best-fit Type (n=323)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=31	n=8	n=7	n=25	E	218	67.5%**
9.5%	2.5%	2.1%	7.7%	1	105	32.5%**
SSR=0.69*	SSR=0.20**	SSR=1.24	SSR=5.50**			
ISTP	ISFP	INFP	INTP	S	143	44.3%**
n=9	n=4	n=12	n=9	N	180	55.7%**
2.8%	1.2%	3.7%	2.8%			
SSR=0.44*	SSR=0.20**	SSR=1.16	SSR=1.17	T	197	61.0%**
ESTP	ESFP	ENFP	ENTP	F	126	39.0%**
n=11	n=11	n=38	n=29			
3.4%	3.4%	11.7%	8.9%	J	200	61.9%
SSR=0.59	SSR=0.39**	SSR=1.86**	SSR=3.18**	P	123	38.1%
ESTJ	ESFJ	ENFJ	ENTJ			
n=47	n=22	n=24	n=36			
14.4%	6.7%	7.4%	11.0%			
SSR=1.38*	SSR=0.53**	SSR=2.64**	SSR=3.79**			

For both tables above: *Difference significant at p<0.05, based on chi-square results.

Looking at reported Type, the most frequent Type preferences are ENTJ and ESTJ (each 12% of the total). Overall, the distribution of reported Type in the group shows preferences for Extraversion, and to a lesser extent for Judging, Thinking and iNtuition.

^{**}Difference significant at p<0.01, based on chi-square results.

MBTI Step I European Data Supplement

In terms of best-fit Type, ESTJ (14%) is the most frequently occurring Type preference, followed by ENFP (12%) and ENTJ (11%). The general pattern is very similar to that found with reported Type, with the group tending to have a preference for Extraversion, and to a lesser extent for Judging, Thinking and iNtuition.

It is known that people often feel pressure to exhibit more of a Thinking style of behaviour in business settings. If this were the case amongst this group we might expect a lower proportion of Thinking Types when we look at best-fit Type than when we look at reported Type. However, such a pattern has not been observed for this group. This contrasts with findings from Dutch and French training delegates, where this pattern has been observed.

Looking at the SSR figures it can be seen that, compared with the UK general population, those with a preference for iNtuition are particularly over-represented.

Although not typical of the UK general population, similar results (especially with regard to Extraversion and iNtuition) have been found with other groups of MBTI users and training course delegates.

MBTI practitioners

Table 7.5: Type table for MBTI practitioners

Reported Type (n=110)

	,			-		
ISTJ	ISFJ	INFJ	INTJ	Type	n	%
n=4	n=2	n=5	n=5	E	73	66.4%**
3.6%	1.8%	4.5%	4.5%	I	37	33.6%**
SSR=0.27**	SSR=0.14**	SSR=2.65*	SSR=3.23*			
				S	29	26.4%**
ISTP	ISFP	INFP	INTP	N	81	73.6%**
n=1	n=3	n=9	n=8	'	01	70.070
0.9%	2.7%	8.2%	7.3%	_T	56	50.9%
SSR=0.14*	SSR=0.45	SSR=2.57**	SSR=2.97**	F	54	49.1%
ESTP	ESFP	ENFP	ENTP] '	54	47.170
n=4	n=4	n=20	n=13	ر [48	43.6%**
3.6%	3.6%	18.2%	11.8%	P	62	56.4%**
SSR=0.63	SSR=0.42	SSR=2.88**	SSR=4.29**	ļ ·	02	30.170
ESTJ	ESFJ	ENFJ	ENTJ			
n=5	n=6	n=5	n=16			
4.5%	5.5%	4.5%	14.5%			
SSR=0.44*	SSR=0.43*	SSR=1.65	SSR=4.95**			

Best-fit Type (n=110)

ISTJ	ISFJ	INFJ	INTJ	Type	n	%
n=6	n=2	n=4	n=6	E	74	67.3%**
5.5%	1.8%	3.6%	5.5%	1	36	32.7%**
SSR=0.40*	SSR=0.14**	SSR=2.12	SSR=3.88**			
ISTP	ISFP	INFP	INTP	S	29	26.4%**
n=3	n=3	n=7	n=5	N	81	73.6%**
2.7%	2.7%	6.4%	4.5%	Т	58	52.7%
SSR=0.42	SSR=0.45	SSR=2.00	SSR=1.86	Ė	52	47.3%
ESTP	ESFP	ENFP	ENTP] '	02	17.070
n=4	n=1	n=23	n=16	J	48	43.6%**
3.6%	0.9%	20.9%	14.5%	Р	62	56.4%**
SSR=0.63	SSR=0.10**	SSR=3.32**	SSR=5.28**			
ESTJ	ESFJ	ENFJ	ENTJ			
n=6	n=4	n=8	n=12			
5.5%	3.6%	7.3%	10.9%			
SSR=0.52	SSR=0.29**	SSR=2.64**	SSR=3.71**			

For both tables above: *Difference significant at p<0.05, based on chi-square results.

Looking at reported Type, the most frequent Type preference is ENFP (18% of the total), followed by ENTJ (15%). Overall, the group tends to have a preference for iNtuition, and to a lesser extent for Extraversion, Perceiving, and Thinking.

^{**}Difference significant at p<0.01, based on chi-square results.

MBTI Step I European Data Supplement

In terms of best-fit Type, ENFP (21%) is also the most frequently occurring Type preference, followed by ENTP (15%). The general pattern is very similar to that found with reported Type, with the group tending to have a preference for iNtuition, and to a lesser extent for Perceiving, Feeling and Extraversion.

Internal consistency reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. Internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for the German samples are shown in Table 7.6.

Table 7.6: Internal consistency reliability

Dimension	Coefficient alpha			
	General	OPPassessment		
	population			
E-I	0.87	0.83		
S-N	0.75	0.72		
T–F	0.80	0.77		
J–P	0.80	0.79		

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. ¹³⁷ On this basis, all of the dimensions of the questionnaire show good reliability in both groups. In addition, the alpha coefficients have been found to be consistent across different age groups and across males and females.

¹³⁷ For example, see Nunnally (1978) or Kline (2000).

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire.

The intercorrelations between dimensions amongst the OPPassessment sample are shown in Table 7.7. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores. ¹³⁸

Table 7.7: Intercorrelations between dimensions

	E-I	S-N	T-F	J–P
E-I		-0.16**	-0.13**	-0.01
S-N			0.14**	0.32**
T-F				0.18**
J-P				

^{**}Significant at p<0.01.

Although statistically significant, only very low correlations were found between most of the dimensions. The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving.

¹³⁸ Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

Validity: the accuracy of the German MBTI Step I instrument in predicting best-fit Type

The purpose of the MBTI instrument is to help individuals to establish their validated or 'best fit' psychological Type. A key measure of the validity of the instrument is, therefore, how well the results relate to best-fit (validated) Type. These data are useful to practitioners in knowing how typically accurate the reported result is likely to be.

Best-fit data are available for two of the samples. The MBTI qualifying course delegates established their best-fit Type as part of their training course, and these data were collected for the whole sample (323 people). A further 110 MBTI practitioners took part in a research study to look at the relationship between MBTI reported Type and best-fit Type.

Table 7.8 presents the results of the analysis comparing best-fit with reported Type. The result shows that the German questionnaire performs in a similar way to other European versions, and there is very good evidence for the accuracy of the instrument. In approximately 60% of cases, a respondent's reported Type will match their best-fit Type, and in around 90% of cases at least three of the four preferences will match.

Table 7.8: Match of reported and best-fit Type

	German qualifying		German MBTI	
	training	training delegates		tioners
	(n=323)		(n=	110)
Agrees with all four letters	59.8%	88.6%	62.7%	93.6%
Agrees with three letters	28.8%	00.070	30.9%	93.0%
Agrees with two letters	9.9%		5.5%	
Agrees with one letter	1.2%	11.4%	0.9%	6.4%
Agrees with no letters	0.3%		0.0%	

	Percentage agreement				
Dimension	German qualifying	German MBTI			
	training delegates	practitioners			
E-I	90.1%	93.6%			
S-N	84.5%	87.3%			
T–F	84.8%	87.3%			
J_P	87.0%	87.3%			

Further analysis was carried out to investigate the validity and accuracy of the questionnaire. Both groups were asked how confident they felt about their results on each Type dichotomy (on a scale from 1 to 5, where 5 indicated the highest degree of confidence). For every dimension, over two-thirds of the group were confident about their Type, with a considerably higher proportion expressing confidence with their E–I preference (82% and 81% for the training delegates and MBTI practitioners, respectively). This corresponds with the findings of

the best-fit research, where a higher level of agreement was found between reported and best-fit preferences for the E–I dimension than for the other three dimensions. All these figures provide further support for the validity of the MBTI approach.

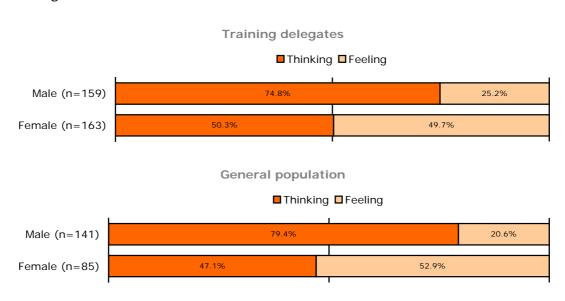
Detailed results are shown in Table 7.9.

Table 7.9: Degree of confidence in results

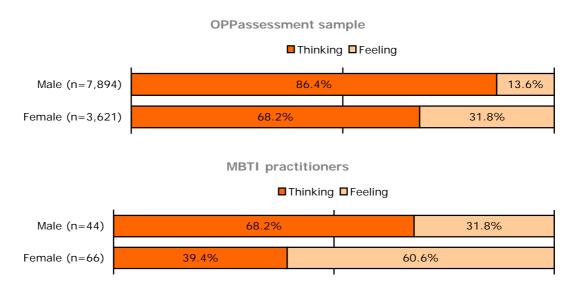
Degree	Percentage of group							
of confidence	E-I		S-N		T–F		J–P	
Communication	Dele- gates	Practi- tioners	Dele- gates	Practi- tioners	Dele- gates	Practi- tioners	Dele- gates	Practi- tioners
5 (highest)	57%	52%	45%	42%	44%	46%	50%	49%
4	25%	29%	28%	36%	26%	25%	22%	26%
3	6%	13%	16%	14%	15%	18%	13%	15%
2	7%	4%	7%	4%	9%	7%	9%	5%
1 (lowest)	6%	3%	4%	5%	7%	4%	6%	4%
% at 4 or above	82%	81%	73%	78%	70%	71%	72%	75%

In summary, there is good evidence for the validity of the German MBTI Step I instrument. Specifically:

- There is a high level of agreement between best-fit and reported Type, comparable with other European language versions.
- Respondents are confident about their results.


Group differences in Type

Across four of the five samples, various types of demographic information was collected. The relationship of Type to each of these factors is described below.


Gender

Most groups who take the MBTI questionnaire show a significant gender difference on the Thinking–Feeling dimension, and this is the case for the four groups in this study, as shown in Figure 7.1. 139

Figure 7.1: Gender differences on the T–F dimension

 $^{^{139}}$ Training delegates: $\chi^2=8.84;$ significant at p<0.01. General population: $\chi^2=25.24;$ significant at p<0.001. OPPassessment sample: $\chi^2=529.23;$ significant at p< 0.001. MBTI practitioners: $\chi^2=8.75;$ significant at p<0.01.

When compared with the T–F distribution in the combined sample, Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women across the groups. This effect has been found many times with many different language versions of the instrument in a number of different cultures.

Age

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, for Sensing versus iNtuition, for Thinking versus Feeling and for Judging versus Perceiving. The OPPassessment sample showed a statistically significant relationship between age and all four of the dimensions, ¹⁴⁰ as shown in Table 7.10. The mean age of people with preferences for Introversion, Sensing, Thinking and Judging was higher than that of those with preferences for Extraversion, iNtuition, Feeling and Perceiving. However, in real terms, the age differences were all less than about one and a half years.

Table 7.10: Significant mean age differences

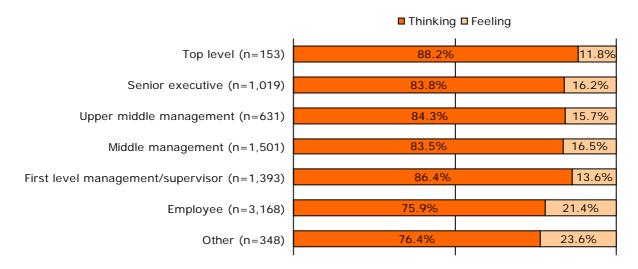
	Extraversion	Introversion	Difference	Significance
Mean age	36.67	38.02	1.35	***
(years)				

¹⁴⁰ Based on independent-samples t-test.

	Sensing	iNtuition	Difference	Significance
Mean age	37.50	36.51	0.99	***
(years)				

	Thinking	Feeling	Difference	Significance
Mean age	37.16	36.60	0.56	**
(years)				

	Judging	Perceiving	Difference	Significance
Mean age	37.23	36.56	0.67	***
(years)				

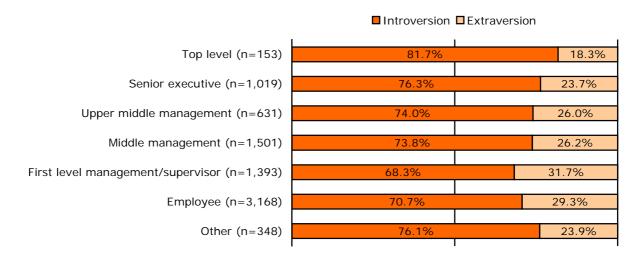

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.

Occupational level

Previous research in other countries has demonstrated that individuals in higher level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower level jobs (Quenk, Hammer and Majors, 2004). This is not fully reflected in the relationship of the Sensing–iNtuition and Thinking–Feeling dimensions with occupational level in the German OPPassessment sample.

No significant differences were found between Sensing-iNtuition and occupational level. However, individuals in higher level jobs in organisations were more likely to have a preference for Thinking than those in lower level jobs, as shown in Figure 7.2.

Figure 7.2: Thinking–Feeling¹⁴¹ and occupational level (OPPassessment data)



 $^{^{141} \}chi^2 = 106.34$; significant at p<0.001.

201

A relationship was also found between Extraversion–Introversion and occupational level, with individuals in higher level jobs in organisations more likely to have a preference for Extraversion than those in lower level jobs, as shown in Figure 7.3.

Figure 7.3: Extraversion–Introversion¹⁴² and occupational level (OPPassessment data)

Education

The training delegate data showed a small but statistically significant tendency¹⁴³ for those educated to degree level (or above) to be more likely to have a preference for iNtuition than those who did not have a degree. However, this finding is taken from a sample containing relatively few people who did not have a degree (31 people), so should be treated with caution.

Specific educational qualifications were not available for the OPPassessment sample; however, the age at which individuals left full-time education was. Those who left full-time education at an older age were significantly more likely to have preferences for iNtuition, 144 Thinking 145 and Perceiving 146.

Work area

Previous research into MBTI Type suggests that an individual's Type influences their choice of career (Hammer, 1998), and indeed there is a statistically significant relationship between each dimension and work

 $^{^{142} \}chi^2 = 35.05$; significant at p<0.001.

 $[\]chi^{2} = 9.35$; significant at p<0.01.

Independent-samples t-test; t=-7.75, significant at p<0.001.

Independent-samples t-test; t=3.40, significant at p<0.001.

¹⁴⁶ Independent-samples t-test; t=-3.97, significant at p<0.001.

area. In the figures that follow, categories have been re-ordered according to the percentage of E, S, T or J, and work areas with fewer than 100 respondents have been omitted (as well as undefined work areas such as 'Other').

Figure 7.4: Extraversion–Introversion and work area

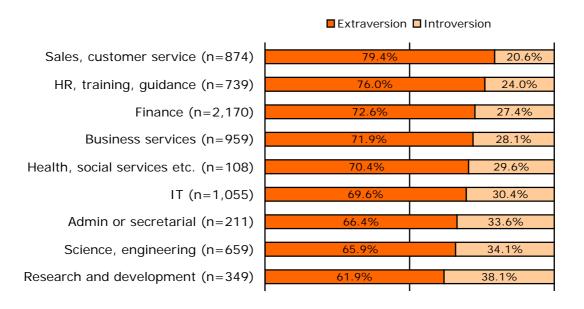
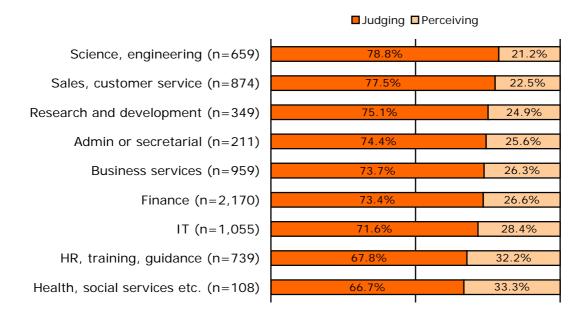


Figure 7.5: Sensing-iNtuition¹⁴⁸ and work area


	■Sensing ■In	ntuition
Admin or secretarial (n=211)	59.7%	40.3%
Sales, customer service (n=874)	59.4%	40.6%
Science, engineering (n=659)	58.9%	41.1%
Finance (n=2,170)	57.4%	42.6%
Research and development (n=349)	52.1%	47.9%
Business services (n=959)	51.9%	48.1%
HR, training, guidance (n=739)	50.5%	49.5%
IT (n=1,055)	50.0%	50.0%
Health, social services etc. (n=108)	49.1%	50.9%

 $^{^{147}}$ $\chi^2\!=\!78.15;$ significant at p<0.001. 148 $\chi^2\!=\!74.67;$ significant at p<0.001.

■ Thinking ■ Feeling Science, engineering (n=659) Research and development (n=349) 9.7% 14.0% IT (n=1,055)86.09 Sales, customer service (n=874) 83.5% 16.5% Business services (n=959) 81.6% 18.4% 19.0% Finance (n=2,170)26.9% Health, social services etc. (n=108) 34.5% HR, training, guidance (n=739) 65.5% Admin or secretarial (n=211) 40.3%

Figure 7.6: Thinking-Feeling¹⁴⁹ and work area

Figure 7.7: Judging-Perceiving¹⁵⁰ and work area

 $^{^{149}}$ $\chi^2{=}\,286.01;$ significant at p<0.001. 150 $\chi^2{=}\,52.21;$ significant at p<0.001.

Nationality

Information on nationality was available for the OPPassessment group. Although two-thirds of the group were German, other nationalities (eg Swiss and Austrian) were also represented (see Appendix 1 for details). Type tables for the three main nationalities are shown below. Analysis suggested that the German sub-group was significantly more likely to have a Thinking ¹⁵¹ and a Judging ¹⁵² preference than the Swiss sub-group, and that the Austrian sub-group was significantly more likely to have a Judging¹⁵³ preference than the Swiss sub-group. The Austrian sub-group was also more likely to have an Extraversion preference than both the Germans¹⁵⁴ and the Swiss¹⁵⁵ sub-groups.

Table 7.11: Type table for German respondents (reported Type, n=6,116)

ISTJ	ISFJ	INFJ	INTJ	Type	n	%
n=772	n=83	n=67	n=360	E	4,418	72.2%**
12.6%	1.4%	1.1%	5.9%	1	1,698	27.8%**
SSR=0.92	SSR=0.11**	SSR=0.64*	SSR=4.18**			
				S	3,317	54.2%**
ISTP	ISFP	INFP	INTP	N	2,799	45.8%**
n=163	n=31	n=57	n=165		-,	
2.7%	0.5%	0.9%	2.7%	T	5,051	82.6%**
SSR=0.41**	SSR=0.08**	SSR=0.29**	SSR=1.10	F	1,065	17.4%**
ESTP	ESFP	ENFP	ENTP] '	1,000	17.170
n=334	n=79	n=193	n=502	J	4,592	75.1%**
5.5%	1.3%	3.2%	8.2%	P	1,524	24.9%**
SSR=0.94	SSR=0.15**	SSR=0.50**	SSR=2.98**		.,02 .	
ESTJ	ESFJ	ENFJ	ENTJ			
n=1,577	n=278	n=277	n=1,178			
25.8%	4.5%	4.5%	19.3%			
SSR=2.48**	SSR=0.36**	SSR=1.64**	SSR=6.56**			

^{*}Difference significant at p<0.05, based on chi-square results.

^{**}Difference significant at p<0.01, based on chi-square results.

 $[\]chi^2 = 43.05$; significant at p<0.001.

 $[\]chi^2$ =38.31; significant at p<0.001. χ^2 =11.17; significant at p<0.001.

 $[\]chi^2 = 5.44$; significant at p<0.05.

 $^{^{155}}$ $\chi^2 = 8.84$; significant at p<0.01.

Table 7.12: Type table for Swiss German-speaking respondents (reported Type, n=2,306)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=288	n=50	n=30	n=116	E	1,618	70.2%**
12.5%	2.2%	1.3%	5.0%	1	688	29.8%**
SSR=0.91	SSR=0.17**	SSR=0.76	SSR=3.57**			
				S	1,240	53.8%**
ISTP	ISFP	INFP	INTP	N	1,066	46.2%**
n=74	n=19	n=29	n=82	'	1,000	10.270
3.2%	0.8%	1.3%	3.6%	T	1,759	76.3%**
SSR=0.50**	SSR=0.13**	SSR=0.40**	SSR=1.45*	F	547	23.7%**
ESTP	ESFP	ENFP	ENTP] '	017	20.770
n=123	n=63	n=109	n=230	J	1,577	68.4%**
5.3%	2.7%	4.7%	10.0%	P	729	31.6%**
SSR=0.92	SSR=0.31**	SSR=0.75*	SSR=3.62**	'	, _ ,	01.070
ESTJ	ESFJ	ENFJ	ENTJ			
n=489	n=134	n=113	n=357			
21.2%	5.8%	4.9%	15.5%			
SSR=2.04**	SSR=0.46**	SSR=1.78**	SSR=5.27**			

^{*}Difference significant at p<0.05, based on chi-square results.

Table 7.13: Type table for Austrian German-speaking respondents (reported Type, n=317)

Г					1		0.7
	ISTJ	ISFJ	INFJ	INTJ	Type	n	%
ľ	n=37	n=4	n=4	n=10	E	248	78.2%**
	11.7%	1.3%	1.3%	3.2%	1	69	21.8%**
	SSR=0.85	SSR=0.10**	SSR=0.74	SSR=2.24*			
ŀ	LOTE	LOED	LNIED	LNITO	S	176	55.5%**
ŀ	ISTP	ISFP	INFP	INTP	N	141	44.5%**
	n=8	n=1	n=1	n=4			
	2.5%	0.3%	0.3%	1.3%	т	256	80.8%**
	SSR=0.39**	SSR=0.05**	SSR=0.10**	SSR=0.52	F	61	19.2%**
	ESTP	ESFP	ENFP	ENTP	· .	٠.	
	n=11	n=4	n=12	n=30	l J	246	77.6%
	3.5%	1.3%	3.8%	9.5%	P	71	22.4%
	SSR=0.60	SSR=0.15**	SSR=0.60	SSR=3.44**	,		
	ESTJ	ESFJ	ENFJ	ENTJ			
ľ	n=93	n=18	n=17	n=63			
	29.3%	5.7%	5.4%	19.9%			
	SSR=2.82**	SSR=0.45**	SSR=1.95*	SSR=6.77**			

^{*}Difference significant at p<0.05, based on chi-square results.

^{**}Difference significant at p<0.01, based on chi-square results.

^{**}Difference significant at p<0.01, based on chi-square results.

Table 7.14: Summary of differences by nationality

	Е	I	S	N	Т	F	J	Р
German (n=6,116)	72%	28%	54%	46%	83%	17%	75%	25%
Swiss (n=2,306)	70%	30%	54%	46%	76%	24%	68%	32%
Austrian (n=317)	78%	22%	55%	45%	81%	19%	78%	22%

Employment status

Employment status (available for the OPPassessment sample) showed a relationship with the Sensing–iNtuition and Thinking–Feeling dimensions. Those who were self-employed were more likely than other groups to have a preference for iNtuition, ¹⁵⁶ whereas those who worked part-time were more likely than other groups to have a preference for Feeling. ¹⁵⁷ This is likely to be a gender effect; 77% of part-time workers were female, compared with 30% of the total group and 28% of full-time workers.

 $^{^{156}}$ $\chi^2{=}\,25.02;$ significant at p<0.001. 157 $\chi^2{=}\,100.25;$ significant at p<0.001.

Appendix 1: Sample descriptions

Sample 1: Data from OPPassessment (representative Germanspeaking professional and managerial sample)

This sample consists of 11,515 individuals who completed the MBTI Step I questionnaire in German via the OPPassessment system between January 2004 and June 2008. Sixty-nine per cent of the respondents were male and 31% were female. Age ranged from 16 to 65 years, with a mean of 36 and a median of 35.

Nationality was disclosed by 80% of respondents, two-thirds of whom were German:

Nationality	Percentage
German	66.3%
Swiss	25.0%
Austrian	3.4%
Other European	4.6%
Other	0.7%

The majority of the group were in full-time employment:

Employment status	Percentage		
Full-time	92.8%		
Part-time	5.1%		
Self-employed	1.6%		
Unemployed	0.3%		
Homemaker	0.2%		
Retired	0.1%		

The majority of the group were of managerial level or above, although the largest single group was employee level (38.6%):

Occupational level	Percentage
Top level	1.9%
Senior executive	12.4%
Upper middle management	7.7%
Middle management	18.3%
First level	17.0%
management/supervisor	
Employee	38.6%
Other	4.2%

A range of work areas were represented:

Work area (job type)	Percentage
Finance	26.3%
IT	12.8%
Business services	11.6%
Sales, customer service	10.6%
HR, training, guidance	9.0%
Science, engineering	8.0%
Research and development	4.2%
Admin or secretarial	2.6%
Health, social services, etc.	1.3%
Education	1.0%
Land, sea or air transport	0.8%
Skilled operative	0.4%
Leisure, personal service	0.1%
Other private sector	0.9%
Other public sector	0.3%
Other	9.9%

Sample 2: General population

This sample consisted of 228 individuals who completed a trial version of the MBTI questionnaire as part of the development of the Step II instrument in 2003. This sample was designed to be representative of the German general population, and every individual was of German nationality.

Of the group, 141 (62%) were male and 85 (38%) female; age ranged from 17 to 53 years (with an average age of 31).

In terms of occupational level, 88 people (39%) described themselves as being at employee level, with 30 (13%) at first level management or supervisory level, 29 (13%) at middle management level, and 18 (8%) at top or senior executive level.

Sample 3: Management development programme participants

The sample consisted of 687 German participants on management development programmes at Ashridge Business School, run between 2000 and 2003. Eighty-seven per cent of the group were male and 13% female. Age ranged from 24 to 63 years.

Sample 4: MBTI Qualifying training course participants

This sample consisted of 323 delegates on German MBTI qualifying training courses from early 2002 to February 2006. Of this group, 163 (50.6%) were female and 159 (49.4%) male; age ranged from 19 to 74 years (with an average age of 38).

In total, 242 people (75%) were educated to degree level or above. Of these, 37 (11%) held a Doctorate and 187 (58%) held a Masters degree. The remaining 18 (6%) held a first degree.

With regard to employment status, 209 people (66%) described themselves as being employed full-time, whilst a further 72 people (23%) described themselves as self-employed. Twenty-one people (7%) worked part-time, and a further 12 (4%) were not in employment.

In terms of job level, 117 people (36%) were at employee level, with 50 (16%) at first level management or supervisory level, 48 (15%) at middle management level, and 55 (17%) at top or senior executive level. Thirty-seven people (12%) described their job level as 'other'. Job type data were not recorded for all the delegates, but the most common job types amongst those for whom data were available was 'HR, training, guidance' (95 people, or 29%).

Sample 5: MBTI practitioners

This sample consisted of 110 MBTI practitioners who took part in a research study to look at the relationship between MBTI reported Type and best-fit Type.

Of this group, 66 (60%) were female and 44 (40%) were male. Age ranged from 26 to 62 years, with a mean of 43. Seventy-three respondents (66%) were German, 20 (18%) were Swiss and five (5%) were Austrian.

Forty-eight people (44%) described their employment status as self-employed, whilst 44 people (40%) described themselves as working full-time and nine (8%) as working part-time.

In terms of job level, 27 people (25%) were at employee level, with four (4%) at first level management or supervisory level, 15 (14%) at middle management level, and 25 (23%) at top or senior executive level. The most common job types amongst the group were 'HR, training, guidance' (71 people, or 65%), and 'Training' (ten people, or 9%).

MBTI[®] Step I[™] instrument

European Data Supplement

Greek

December 2016

Contents

Introduction	214
Type distribution	215
OPPassessment 2010-15 sample	
Internal consistency reliability	
Intercorrelations between MBTI dimensions	
Validity: the accuracy of the Greek MBTI Step I instrument in	
predicting best-fit Type	219
Group differences in Type	219
Gender	219
Age	220
Occupational level	220
Education	221
Work area	221
Nationality	
Employment status	222
Appendix 1: Sample description	223
Sample 1: OPPassessment 2010-15 sample	223
Sample 2: OPPassessment Step I reliability sample	224

© Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner.

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

® MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 $^{\text{TM}}$ Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 \circledR OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. \urcorner OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Introduction

Because the Greek-language version of the questionnaire is so new, the amount of data collected so far is limited.

However, this chapter contains details of the main analyses conducted using data collected via OPPassessment. Two different samples were used. A brief description of each sample is given below.

- OPPassessment 2010-15: 595 individuals who completed the MBTI Step I questionnaire in Greek via the OPPassessment system between 1st January 2010 and 15th September 2015. 158 159
- OPPassessment Step I reliability sample: 925 individuals who completed the MBTI Step I questionnaire in Greek via the OPPassessment system between 1st January 2010 and 15th September 2015. This was used to calculate internal consistency reliability of the Step I questionnaire. 160

The results of the analyses are outlined below.

¹⁵⁸ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via

email and/or completed online. 159 The data were downloaded on the 16^{th} September 2015 and therefore comprises data from

individuals for whom MBTI reports were generated by 16th September 2015.

160 The data were downloaded on the 7th April 2016 and therefore comprises data from individuals from whom MBTI reports were generated by 7th April 2016.

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. Opposite are Type tables for the Greek sample described on the previous page.

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group. An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is underrepresented. Asterisks are used to denote whether the over- or underrepresentations are statistically significant, based on the results of chi-square analysis. ¹⁶¹

Ideally, the Type distribution from a large representative sample of the Greek population would be used to calculate SSRs in this data supplement. However, such a sample does not currently exist. In its place, SSRs have been calculated using Type data from the UK general population (Kendall, 1998). Evidence (eg Hackston and Kendall, 2004; Quenk et al., 2004; Kirby, Kendall and Barger, 2007) does suggest that although Type-related behaviours vary a good deal from country to country and from culture to culture, the frequencies of underlying MBTI Types do not.

 161 Chi-square analysis (often abbreviated to χ^2) is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the UK general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each Type within a particular sample differs significantly from the proportion

of people reporting the same Type within the reference group.

OPPassessment 2010-15 sample

Table 8.1: Type table for OPPassessment 2010-15 sample

Reported Type (n=595)

ISTJ	ISFJ	INFJ	INTJ	Type	10	%
1313	1313	INFJ	TIVIJ	Туре	n	70
n=101	n=21	n=10	n=40	E	382	64.2%**
17.0%	3.5%	1.7%	6.7%	1	213	35.8%**
SSR=1.24*	SSR=0.28**	SSR=1.00	SSR=4.79**			
ISTP	ISFP	INFP	INTP	S	306	51.4%**
n=10	n=4	n=9	n=18	N	289	48.6%**
1.7%	0.7%	1.5%	3.0%			
SSR=0.27**	SSR=0.11**	SSR=0.47*	SSR=1.25**	T	453	76.1%**
ESTP	ESFP	ENFP	ENTP	F	142	23.9%**
n=16	n=8	n=30	n=45] .		7. 50.
2.7%	1.3%	5.0%	7.6%	J	455	76.5%**
SSR=0.47**	SSR=0.15**	SSR=0.79	SSR=2.71**	P	140	23.5%**
ESTJ	ESFJ	ENFJ	ENTJ			
n=119	n=27	n=33	n=104			
20.0%	4.5%	5.5%	17.5%			
SSR=1.92*	SSR=0.36**	SSR=1.96**	SSR=6.03**			

^{*}Difference between Greek sample and UK general population significant at p<0.05, based on chi-square results.

Looking at reported Type, the most frequent Type preference is ESTJ (20% of the total), followed by ENTJ (17.5%) and ISTJ (17.0%). Overall, the group tends to have a preference for Thinking and Judging and to a lesser extent for Extraversion and Sensing.

It should be noted that the wider applicability of these Type distributions should not be overstated as the samples on which they are based cannot be considered to be representative of any wider group. Further Type distribution data will be added to this supplement as it becomes available.

^{**}Difference significant at p<0.01, based on chi-square results.

Internal consistency reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. Internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for the Greek OPPassessment Step I reliability sample are shown in Table 8.2.

Table 8.2: Internal consistency reliability

Dimension	Coefficient alpha
	(n=925)
E-I	0.81
S-N	0.74
T–F	0.78
J–P	0.80

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. ¹⁶² On this basis, all of the dimensions of the questionnaire show good reliability.

¹⁶² For example, see Nunnally (1978) or Kline (2000).

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire.

The intercorrelations between dimensions amongst the OPPassessment sample are shown in Table 8.3. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores. 163

Table 8.3: Intercorrelations between dimensions

	E-I	S-N	T-F	J-P
E-I		-0.21**	-0.15**	-0.11**
S-N			0.22**	0.41**
T-F				0.15**
J-P				

^{**}Significant at *p<0.05, **p<0.01.

The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving.

In addition, for this sample, S–N has also been shown to correlate moderately with T–F, suggesting that a preference for Sensing is likely to be associated with a preference for Thinking, and that a preference for iNtuition is likely to be associated with a preference for Feeling. Similarly, S–N has been shown to correlate moderately with E–I, suggesting that a preference for Introversion is likely to be associated with a preference for Sensing, and that a preference for Extraversion is likely to be associated with a preference for iNtuition.

There are also small correlations between E–I and T–F, E–I and J–P and T–F and J–P. Extraversion is associated with Thinking and Judging, whilst Introversion is associated with Feeling and Perceiving. Thinking is associated with Judging whilst Feeling is associated with Perceiving.

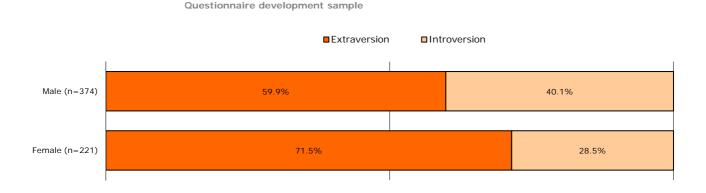
¹⁶³ Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

At present, we do not have sufficient data to know whether these reflect a true relationship amongst people who take the Greek questionnaire, or whether the findings are sample-specific. This will be explored once more data become available.

Validity: the accuracy of the Greek MBTI Step I instrument in predicting best-fit Type

The purpose of the MBTI instrument is to help individuals to establish their validated or 'best-fit' psychological Type. A key measure of the validity of the instrument is, therefore, how well the results relate to best-fit (validated) Type. These data are useful to practitioners in knowing how typically accurate the reported result is likely to be.

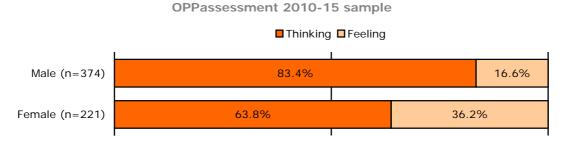
For this sample, best-fit data are not available and so we were unable to conduct this analysis.


Group differences in Type

Various types of demographic information were collected for the Greek questionnaire development sample. The relationship of MBTI Type to each of these factors is described below.

Gender

Most groups who take the MBTI questionnaire show a significant gender difference on the Thinking–Feeling dimension, and this is the case for the group in this study, as shown in Figure 8.5. ¹⁶⁴ In this sample, there was also a significant gender difference on the Extraversion–Introversion dimension, as shown in Figure 8.4.


Figure 8.4: Gender differences on the E-I dimension

¹⁶⁴For Extraversion-Introversion: χ^2 =8.13; significant at p<0.01; for Thinking-Feeling: χ^2 =29.44; significant at p<0.001

When compared with the E–I distribution in the combined sample, Extraversion preferences are over-represented amongst women and Introversion preferences are over-represented amongst men (although even amongst men in this group, there are more people with a preference for Extraversion than Introversion).

Figure 8.5: Gender differences on the T–F dimension

When compared with the T–F distribution in the combined sample, Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women (although even amongst women in this group there are more people with a preference for Thinking than Feeling). This effect has been found many times with many different versions of the instrument in a number of different cultures.

Age

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, for Sensing versus iNtuition, for Thinking versus Feeling and for Judging versus Perceiving. The results showed no statistically significant differences.

Occupational level

Previous research in other countries has demonstrated that individuals in higher level jobs in organisations are more likely to have

preferences for iNtuition and for Thinking than those in lower level jobs (Quenk, Hammer and Majors, 2004).

390 people disclosed their occupational level. However, the number of individuals in the 'top level' category was too small to be included in the analysis.

When the other occupational levels were compared, significant differences were only found for the Thinking–Feeling dimension, as shown in Figure 8.6. 165

OPPassessment 2010-15 sample ■ Thinking ■ Feeling Senior executive (n=53) 13.2% 86.8% 84.5% Upper middle management (n=58) 15.5% 24.5% Middle management (n=53)75.5% 15.5% First level management/ supervisor (n=58) 84.5% Employee (n=140) 65.7% 34.3%

Figure 8.6: Occupational level differences on the T–F dimension

When compared to the combined sample, Thinking preferences are over-represented amongst individuals in higher level jobs, and Feeling preferences are over-represented amongst people in lower level jobs.

Education

Specific educational qualifications were not available for the sample; however, the age at which individuals left full-time education was available. There were found to be no links between MBTI dimensions and the age at which individuals left full-time education.

Work area

Previous research into MBTI Type suggests that an individual's Type influences their choice of career (Hammer, 1998). However, the number of different work areas covered by this sample was so broad that the number of people in each category was too small for analyses to be conducted. This is another example of where further analysis will be conducted when more data become available.

 $^{^{165} \}chi^2 = 6.17$; significant at p<0.05.

MBTI Step I European Data Supplement

Nationality

Nationality was disclosed by 95% of the sample. Of these, 94% were Greek. No other nationality was represented in sufficiently large numbers for an analysis of Type differences by nationality to be conducted.

Employment status

Employment status (ie whether a person works full-time, part-time, is self-employed, etc) was disclosed by 75% of the sample. Of these, 96% were working full-time. No other employment status was represented in sufficiently large numbers for an analysis of Type differences by employment status to be conducted.

Appendix 1: Sample description

Sample 1: OPPassessment 2010-15 sample

This sample consists of 595 individuals who completed the MBTI Step I or Step II questionnaire in Greek via the OPPassessment system between January 2010 and September 2015.

The data were downloaded on the 16th September 2015 and therefore comprises data from individuals from whom MBTI reports were generated by 16th September 2015.

Of these individuals, 37% were female and 63% were male. Age ranged from 14 to 60 years, with a mean of 35 and median of 34.

Nationality was disclosed by 95% of respondents. Of these, 94% were Greek. No other individual nationality was represented in large numbers.

Nationality	Percentage
Greek	94.4%
Other	5.6%

The majority of those who disclosed their employment status were in full-time employment:

Employment status	Percentage
Full-time	71.9%
Part-time	0.8%
Self-employed	1.0%
Retired	0.0%
Homemaker	0.0%
Unemployed	1.5%
Not disclosed	24.7%

Of those who disclosed their occupational level, many were of managerial level or above, although the largest single group was employee level (23.5%):

Occupational level	Percentage
Top level	4.7%
Senior executive	8.9%
Upper middle management	9.7%
Middle management	8.9%
First-level	9.7%
management/supervisor	
Employee	23.5%
Not disclosed	34.5%

A range of work areas were represented:

Work area (job type)	Percentage
Finance	14.3%
Other private sector	12.8%
Sales, customer service	9.6%
HR, training, guidance	6.6%
Business services	5.5%
IT	5.4%
Admin or secretarial	3.5%
Science, engineering	2.7%
Health, social services etc.	2.5%
Research and development	1.7%
Education	1.2%
Land, sea or air transport	1.2%
Other public sector	0.7%
Leisure, personal service	0.2%
Other	5.4%
Not disclosed	26.9%

Sample 2 : OPPassessment Step I reliability sample

This sample consists of 925 individuals who completed the MBTI Step I questionnaire in Greek via the OPPassessment system between 1st January 2010 and 15th September 2015. This sample was used to calculate the internal consistency reliability of the MBTI Step I questionnaire.

The data were downloaded on the 7th April 2016 and therefore comprises data from individuals from whom MBTI reports were generated by 7th April 2016.

Of these individuals, 45% were female and 55% were male. Age ranged from 16 to 56 years, with a mean of 34 and median of 33.

Nationality was disclosed by 63% of respondents. Of these, 94% were Greek. No other individual nationality was represented in large numbers.

Nationality	Percentage
Greek	94.3%
Other	5.7%

The majority of those who disclosed their employment status were in full-time employment:

Employment status	Percentage
Full-time	48.5%
Part-time	0.5%
Self-employed	0.6%
Retired	0.0%
Homemaker	0.0%
Unemployed	1.0%
Not disclosed	49.3%

Of those who disclosed their occupational level, many were of managerial level or above, although the largest single group was employee level (15.4%):

Occupational level	Percentage
Top level	3.1%
Senior executive	5.8%
Upper middle management	6.4%
Middle management	6.2%
First-level	6.7%
management/supervisor	
Employee	15.4%
Not disclosed	56.4%

MBTI Step I	European	Data Su	pplement
-------------	----------	---------	----------

MBTI[®] Step I[™] instrument

European Data Supplement

Italian

January 2009

MBTI Step I European Data Supplement

Contents

Introduction	229
Type distribution	230
OPPassessment data (representative Italian-speaking professio	nal
and managerial sample)	231
Management development programme participants	232
Internal consistency reliability	233
Intercorrelations between MBTI dimensions	234
Validity: the accuracy of the Italian MBTI Step I instrument in	
predicting best-fit Type	235
Group differences in Type	235
Gender	235
Age	235
Occupational level	236
Education	237
Work area	237
Nationality	238
Employment status	239
Appendix 1: Sample description	240
Sample 1: Data from OPPassessment (representative Italian-	
speaking professional and managerial sample)	240
Sample 2: Management development programme participants.	241

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner.

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

[©] Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

[®] MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 $^{^{\}text{TM}}$ Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 $^{\@}$ OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. TM OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Introduction

Data collected from the Italian version of the MBTI Step I questionnaire were analysed to produce the findings in this chapter. Brief descriptions of the two samples are given below, with further details provided in Appendix 1.

- A group of 1,987 individuals who completed the MBTI Step I questionnaire in Italian via the OPPassessment system between 2004 and mid-2008. 166 This sample is considered to be representative of the groups of people with whom the Italian MBTI instrument has been and will be used for applications such as management development, coaching, counselling and teambuilding. As such, it is likely to represent a cross-section of the Italianspeaking professional and managerial population.
- A sample of 128 Italian participants on management development programmes at Ashridge Business School, run between 2000 and 2003. ¹⁶⁷

The results of the analyses are outlined below.

¹⁶⁶ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via email and/or completed online.

167 Data reproduced with kind permission from Ashridge Business School.

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. Opposite is a Type table for the Italian sample described on the previous page.

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group. An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is underrepresented. Asterisks are used to denote whether the over- or underrepresentations are statistically significant, based on the results of chi-square analysis. ¹⁶⁸

Ideally, the Type distribution from a large representative sample of the Italian population would be used to calculate SSRs in this data supplement. However, such a sample does not currently exist. In its place, SSRs have been calculated using Type data from the UK general population (Kendall, 1998), which can be justified by the fact that Type distributions for comparable Italian and British groups, such as managers and professionals, are similar. Evidence (eg Hackston and Kendall, 2004; Quenk et al., 2004; Kirby, Kendall and Barger, 2007) does suggest that although Type-related behaviours vary a good deal from country to country and from culture to culture, the frequencies of underlying MBTI Types do not.

 $^{^{168}}$ Chi-square analysis (often abbreviated to $\chi^2)$ is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the UK general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each type within a particular sample differs significantly from the proportion of people reporting the same type within the reference group.

OPPassessment data (representative Italian-speaking professional and managerial sample)

Table 9.1: Type Table for OPPassessment data (reported Type, n=1,987)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=297	n=59	n=35	n=112	E	1,305	65.7%**
14.9%	3.0%	1.8%	5.6%	I	682	34.3%**
SSR=1.09	SSR=0.23**	SSR=1.03	SSR=4.00**			
ISTP	ISFP	INFP	INTP	S	1,122	56.5%**
n=51	n=21	n=27	n=80	N	865	43.5%**
2.6%	1.1%	1.4%	4.0%	T	1,518	76.4%**
SSR=0.40**	SSR=0.17**	SSR=0.43**	SSR=1.64**	F	469	23.6%**
ESTP	ESFP	ENFP	ENTP	ļ ·	107	20.070
n=78	n=29	n=79	n=125	J	1,497	75.3%**
3.9%	1.5%	4.0%	6.3%	P	490	24.7%**
SSR=0.68**	SSR=0.17**	SSR=0.63**	SSR=2.28**		.,,	/ 0
ESTJ	ESFJ	ENFJ	ENTJ			
n=468	n=119	n=100	n=307			
23.6%	6.0%	5.0%	15.5%			
SSR=2.26**	SSR=0.48**	SSR=1.83**	SSR=5.26**			

^{*}Difference significant at p<0.05, based on chi-square results.

The most common single Type preference is ESTJ (24% of the total), followed by ENTJ (16%); this is a common finding with managerial groups in other countries. The SSR results suggest that, in comparison with the UK general population, those with preferences for NT are over-represented, and those with preferences for SF are under-represented. Again, this is a common finding with managerial groups.

^{**}Difference significant at p<0.01, based on chi-square results.

Management development programme participants

Table 9.2: Type table for management development programme participants (reported Type, n=128)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=15	n=2	n=2	n=9	E	88	68.8%**
11.7%	1.6%	1.6%	7.0%	1	40	31.3%**
SSR=0.85	SSR=0.12**	SSR=0.91	SSR=5.00**			
ISTP	ISFP	INFP	INTP	S	65	50.8%**
n=4	n=1	n=2	n=5	- N	63	49.2%**
3.1%	0.8%	1.6%	3.9%	_	107	02 40/**
SSR=0.49**	SSR=0.13**	SSR=0.49	SSR=1.60	│ T _ F	107 21	83.6%** 16.4%**
ESTP	ESFP	ENFP	ENTP	 	21	10.470
n=4	n=3	n=4	n=16	J	89	69.5%*
3.1%	2.3%	3.1%	12.5%	P	39	30.5%*
SSR=0.54	SSR=0.27*	SSR=0.50	SSR=4.54**			
ESTJ	ESFJ	ENFJ	ENTJ			
n=31	n=5	n=2	n=23			
24.2%	3.9%	1.6%	18.0%			
SSR=2.33**	SSR=0.31**	SSR=0.57	SSR=6.12**			

^{*}Difference significant at p<0.05, based on chi-square results. **Difference significant at p<0.01, based on chi-square results.

The Type distribution is similar to that for the OPPassessment sample described earlier, with ESTJ (24% of the total) being the most common single Type preference, and NT being over-represented and SF being under-represented.

Internal consistency reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. The internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for the Italian OPPassessment sample are shown in Table 9.3.

Table 9.3: Internal consistency reliability

Dimension	Coefficient
	alpha
E-I	0.81
S-N	0.75
T–F	0.74
J_P	0.78

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. 169 On this basis, all of the dimensions of the questionnaire show good reliability. In addition, the alpha coefficients have been found to be consistent across different age groups and across males and females.

¹⁶⁹ For example, see Nunnally (1978) or Kline (2000).

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire.

The intercorrelations between dimensions amongst the Italian OPPassessment sample are shown in Table 9.4. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores. ¹⁷⁰

Table 9.4: Intercorrelations between dimensions

	E-I	S-N	T-F	J–P
E-I		-0.12**	-0.14**	0.02
S-N			0.18**	0.37**
T-F				0.19**
J-P				

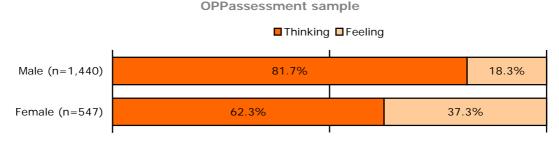
^{**}Significant at p<0.01.

Although statistically significant, only very low correlations were found between most of the dimensions. The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving.

¹⁷⁰ Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

Validity: the accuracy of the Italian MBTI Step I instrument in predicting best-fit Type

At present, insufficient data have been collected for the Italian language version to be able to report any best-fit validity results.


Group differences in Type

Various types of demographic information were collected for the Italian OPPassessment sample. The relationship of Type to each of these factors is described below.

Gender

Most groups who take the MBTI questionnaire show a significant gender difference on the Thinking–Feeling dimension, and this is the case for the group in this study, as shown in Figure 9.1.¹⁷¹

Figure 9.1: Gender differences on the T–F dimension

When compared with the T–F distribution in the combined sample, Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women (although even amongst women in this group there are more individuals with a preference for Thinking than for Feeling). This effect has been found many times with many different versions of the instrument in a number of different cultures.

Age

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

 $^{^{171}}$ χ^2 =82.71; significant at p<0.001.

The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, for Sensing versus iNtuition, for Thinking versus Feeling and for Judging versus Perceiving. The OPPassessment sample showed a statistically significant relationship between age and two of the dimensions, ¹⁷² as shown in Table 9.5. The mean age of people with a preference for Introversion and/or Thinking was approximately one year higher than that of those with a preference for Extraversion and/or Feeling.

Table 9.5: Significant mean age differences

	Extraversion	Introversion	Difference	Significance
Mean age	37.01	37.87	0.86	*
(years)				

	Thinking	Feeling	Difference	Significance
Mean age	37.57	36.42	1.15	*
(years)				

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.

Occupational level

Previous research in other countries has demonstrated that individuals in higher level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower level jobs (Quenk, Hammer and Majors, 2004). This is in part reflected in the relationship of the Thinking–Feeling dimension with occupational level in the OPPassessment sample.

The data suggest that individuals at employee level are more likely to have a preference for Feeling than those at higher levels, with the proportion of people with preferences for Feeling remaining fairly consistent from first level management/supervisor through to senior executive level, as shown in Figure 9.2.

¹⁷² Independent-samples t-test; both significant at p<0.05.

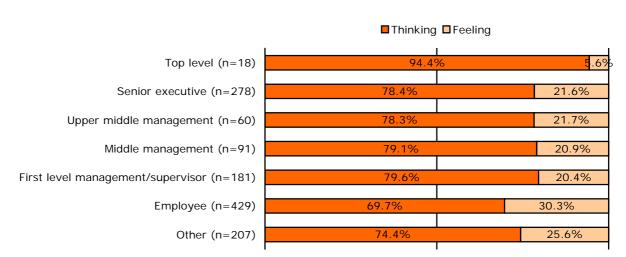


Figure 9.2: Thinking–Feeling¹⁷³ and occupational level (OPPassessment data)

Education

Specific educational qualifications were not available for the OPPassessment sample; however, the age at which individuals left full-time education was. There was found to be a link between two of the dimensions and the age at which individuals left full-time education. On average, people with preferences for iNtuition and/or Thinking left education approximately one year later than those with a preference for Sensing and/or Feeling.

Work area

Previous research into MBTI Type suggests that an individual's Type influences their choice of career (Hammer, 1998). For this sample, there is a statistically significant relationship between only the Sensing–iNtuition dimension and work area. In Figure 9.3, categories have been re-ordered according to the percentage of Sensing Types, and work areas with fewer than 100 respondents have been omitted (as well as undefined work areas such as 'Other').

 $^{^{173} \}chi^2 = 15.08$; significant at p<0.05.

■ Sensing ■ Intuition Finance (n=245) 33.9% 38.2% Business services (n=110) 61.8% 54.7% 45.3% Sales, customer service (n=223) HR, training, guidance (n=112) 47.3% 52.7% 52.9% IT (n=119) 47.1%

Figure 9.3: Sensing-iNtuition¹⁷⁴ and work area

Nationality

Information on nationality was available for the OPPassessment group: 89% of the group were Italian and 9% were Swiss.

Type tables for the two main nationalities are shown below, along with a summary of the differences. Analysis suggested that the Italian subgroup was significantly more likely to have a preference for iNtuition 175 and for Thinking 176 than the Swiss sub-group.

Table 9.6:	Type table for	Italian respondents	(reported T	ype, $n=1,426$)
------------	----------------	---------------------	-------------	------------------

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=185	n=40	n=25	n=88	E	964	67.6%**
13.0%	2.8%	1.8%	6.2%	1	462	32.4%**
SSR=0.95	SSR=0.22**	SSR=1.02	SSR=4.38**			
LOTE	1055	INIED	LAITO	S	766	53.7%**
ISTP	ISFP	INFP	INTP	N	660	46.3%**
n=32	n=15	n=22	n=55			
2.2%	1.1%	1.5%	3.9%	T	1,091	76.5%**
SSR=0.35**	SSR=0.17**	SSR=0.48**	SSR=1.58*	F	335	23.5%**
ESTP	ESFP	ENFP	ENTP		000	20.070
n=50	n=20	n=61	n=99	J	1,072	75.2%**
3.5%	1.4%	4.3%	6.9%	P	354	24.8%**
SSR=0.60**	SSR=0.16**	SSR=0.68*	SSR=2.52**			2 0 / 0
ESTJ	ESFJ	ENFJ	ENTJ			
n=343	n=81	n=71	n=239			
24.1%	5.7%	5.0%	16.8%			
SSR=2.31**	SSR=0.45**	SSR=1.81**	SSR=5.71**			

^{*}Difference significant at p<0.05, based on chi-square results.

^{**}Difference significant at p<0.01, based on chi-square results.

 $^{^{174}}$ $\chi^2{=}36.98;$ significant at p<0.01. 175 $\chi^2{=}17.02;$ significant at p<0.001. 176 $\chi^2{=}3.83;$ significant at p<0.05.

Table 9.7: Type table for Swiss Italian-speaking respondents (reported Type, n=139)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=32	n=6	n=2	n=5	E	85	61.2%*
23.0%	4.3%	1.4%	3.6%	1	54	38.8%*
SSR=1.68**	SSR=0.34**	SSR=0.84	SSR=2.56*			
ISTP	ISFP	INFP	INTP	S	100	71.9%
n=3	n=4	n=0	n=2	N	39	28.1%
2.2%	2.9%	0.0%	1.4%	Т Т	96	69.1%**
SSR=0.34*	SSR=0.47	SSR=0.00*	SSR=0.59	F	43	30.9%**
ESTP	ESFP	ENFP	ENTP	ļ ·	10	30.770
n=6	n=8	n=3	n=4	J	109	78.4%**
4.3%	5.8%	2.2%	2.9%	Р	30	21.6%**
SSR=0.74	SSR=0.66	SSR=0.34*	SSR=1.04			
ESTJ	ESFJ	ENFJ	ENTJ			
n=29	n=12	n=8	n=15			
20.9%	8.6%	5.8%	10.8%			
SSR=2.01**	SSR=0.68	SSR=2.09*	SSR=3.67**			

^{*}Difference significant at p<0.05, based on chi-square results.

Table 9.8: Summary of differences by nationality

	Е	I	S	N	Т	F	J	Р
Italian (n=1,426)	68%	32%	54%	46%	76%	24%	75%	25%
Swiss (n=139)	61%	39%	72%	28%	69%	31%	78%	22%

Employment status

Employment status has often been found to show a relationship with MBTI dimensions in other language versions. However, amongst the Italian-speaking sample, 96% of the group reported that they worked full-time. There were insufficient numbers of people who worked part-time or were self-employed for any group-level analyses to be conducted. Once additional data become available it will be possible to conduct this analysis.

^{**}Difference significant at p<0.01, based on chi-square results.

Appendix 1: Sample description

Sample 1: Data from OPPassessment (representative Italianspeaking professional and managerial sample)

This sample consists of 1,987 individuals who completed the MBTI Step I instrument in Italian via the OPPassessment system between 2004 and mid-2008. Seventy-three per cent of the respondents were male and 27% were female. Age ranged from 18 to 66 years, with a mean of 37 and a median of 36.

Nationality was disclosed by 80% of respondents. Of these, 89% were Italian and 9% were Swiss. No other individual nationality was represented in large numbers.

Nationality	Percentage
Italian	89.3%
Swiss	8.7%
Other	2.0%

The majority of the group were in full-time employment:

Employment status	Percentage
Full-time	95.6%
Part-time	1.8%
Self-employed	2.6%
Unemployed	0.1%

Many of the group were of managerial level or above, but with the largest single group being employee (34%):

Occupational level	Percentage
Top level	1.4%
Senior executive	22.0%
Upper middle management	4.7%
Middle management	7.2%
First level	14.3%
management/supervisor	
Employee	33.9%
Other	16.4%

A range of work areas were represented:

Work area (job type)	Percentage
Finance	19.2%
Sales, customer service	17.5%
IT	9.3%
HR, training, guidance	8.8%
Business services	8.6%
Research and development	5.6%
Science, engineering	4.5%
Admin or secretarial	3.2%
Land, sea or air transport	1.0%
Health, social services, etc.	0.3%
Leisure, personal service	0.2%
Unskilled operative	0.2%
Education	0.1%
Skilled operative	0.1%
Other private sector	7.8%
Other public sector	0.2%
Other	13.3%

Sample 2: Management development programme participants

The sample consisted of 128 Italian participants on management development programmes at Ashridge Business School, run between 2000 and 2003. Eighty-six per cent of the group were male and 14% female. Age ranged from 28 to 58 years.

MBTI Step	I European	Data Supp	lement
-----------	------------	-----------	--------

MBTI[®] Step I[™] instrument

European Data Supplement

Norwegian

January 2009

MBTI Step I European Data Supplement

Contents

Introduction	. 245
Type distribution	. 246
OPPassessment data (representative Norwegian-speaking	
professional and managerial sample)	. 247
Internal consistency reliability	. 248
Intercorrelations between MBTI dimensions	. 249
Validity: the accuracy of the Norwegian MBTI Step I instrument in	
predicting best-fit Type	. 250
Group differences in Type	. 250
Gender	. 250
Age	. 251
Occupational level	
Education	
Work area	. 252
Nationality	. 253
Employment status	. 253
Appendix 1: Sample description	
Sample 1: Data from OPPassessment (representative Norwegian	
speaking professional and managerial sample)	

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner.

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

® MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 $^{\text{TM}}$ Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

® OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. ™ OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

[©] Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

Introduction

Data collected from the Norwegian electronic version of the MBTI Step I questionnaire were analysed to produce the findings in this supplement. A brief description of the sample is given below, with further details provided in Appendix 1.

• The sample consisted of 915 individuals who completed the MBTI Step I questionnaire in Norwegian via the OPPassessment system between 2004 and mid-2008. This sample is considered to be representative of the groups of people with whom the Norwegian MBTI instrument has been and will be used for applications such as management development, coaching, counselling and teambuilding. As such, it is likely to represent a cross-section of the Norwegian-speaking professional and managerial population.

The results of the analyses are outlined below.

 $^{^{177}}$ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via email and/or completed online.

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. Opposite is a Type table for the Norwegian sample described on the previous page.

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group. An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is underrepresented. Asterisks are used to denote whether the over- or underrepresentations are statistically significant, based on the results of chisquare analysis. 178

Ideally, the Type distribution from a large representative sample of the Norwegian population would be used to calculate SSRs in this data supplement. However, such a sample does not currently exist. In its place, SSRs have been calculated using Type data from the UK general population (Kendall, 1998), which can be justified by the fact that Type distributions for comparable Norwegian and British groups, such as managers, are similar. Evidence (eg Hackston and Kendall, 2004; Quenk et al., 2004; Kirby, Kendall and Barger, 2007) does suggest that although Type-related behaviours vary a good deal from country to country and from culture to culture, the frequencies of underlying MBTI Types do not.

 $^{^{178}}$ Chi-square analysis (often abbreviated to $\chi^2)$ is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the UK general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each type within a particular sample differs significantly from the proportion of people reporting the same type within the reference group.

OPPassessment data (representative Norwegian-speaking professional and managerial sample)

Table 10.1: Type table for OPPassessment Data (reported Type, n=915)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=90	n=14	n=4	n=16	E	735	80.3%**
9.8%	1.5%	0.4%	1.7%	I	180	19.7%**
SSR=0.72**	SSR=0.12**	SSR=0.26**	SSR=1.24			
			LAITE	S	619	67.7%**
ISTP	ISFP	INFP	INTP	N	296	32.3%**
n=29	n=6	n=4	n=17			
3.2%	0.7%	0.4%	1.9%	Т	780	85.2%**
SSR=0.49**	SSR=0.11**	SSR=0.14**	SSR=0.76	F	135	14.8%**
ESTP	ESFP	ENFP	ENTP	'	100	11.070
n=101	n=15	n=24	n=86] J	633	69.2%**
11.0%	1.6%	2.6%	9.4%	P	282	30.8%**
SSR=1.90**	SSR=0.19**	SSR=0.42**	SSR=3.41**	·		00.070
ESTJ	ESFJ	ENFJ	ENTJ			
n=311	n=53	n=15	n=130			
34.0%	5.8%	1.6%	14.2%			
SSR=3.27**	SSR=0.46**	SSR=0.60	SSR=4.84**			

^{*}Difference significant at p<0.05, based on chi-square results.

The most common single Type preference is ESTJ (34% of the total), followed by ENTJ (14%); this is a common finding with managerial groups in other countries. The SSR results suggest that, in comparison with the UK general population, those with preferences for F, and particularly SF, are under-represented. This is a common finding with managerial groups, although it is often found to occur alongside an over-representation of NT Types. This was not consistently found to be the case for the Norwegian group, where only the two ENT groups were over-represented.

^{**}Difference significant at p<0.01, based on chi-square results.

Internal consistency reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. Internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for the Norwegian OPPassessment sample are shown in Table 10.2.

Table 10.2: Internal consistency reliability

Dimension	Coefficient	
	alpha	
E-I	0.84	
S-N	0.80	
T–F	0.72	
J_P	0.80	

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. 179 On this basis, all of the dimensions of the questionnaire show good reliability. In addition, the alpha coefficients have been found to be consistent across different age groups and both genders.

248

¹⁷⁹ For example, see Nunnally (1978) or Kline (2000).

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire.

The intercorrelations between dimensions amongst the OPPassessment sample are shown in Table 10.3. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores. ¹⁸⁰

Table 10.3: Intercorrelations between dimensions

	E-I	S-N	T-F	J–P
E-I		-0.17**	-0.04	-0.02
S-N			0.06	0.36**
T-F				0.05
J-P				

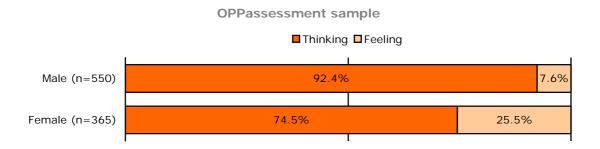
^{**}Significant at p<0.01.

Only very low correlations were found between most of the dimensions. The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving. The E–I/S–N correlation was statistically significant, but very small in real terms.

¹⁸⁰ Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

Validity: the accuracy of the Norwegian MBTI Step I instrument in predicting best-fit Type

At present, insufficient data have been collected for the Norwegian language version to be able to report any best-fit validity results.


Group differences in Type

Various types of demographic information were collected for the OPPassessment sample. The relationship of Type to each of these factors is described below.

Gender

Most groups who take the MBTI questionnaire show a significant gender difference on the Thinking–Feeling dimension, and this is the case for the group in this study, as shown in Figure 10.1.¹⁸¹

Figure 10.1: Gender differences on the T–F dimension

When compared with the T–F distribution in the combined sample, Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women (although even amongst women in this group there are more individuals with a preference for Thinking than for Feeling). This effect has been found many times with many different versions of the instrument in a number of different cultures.

For this group, there were also significant gender differences on the Judging–Perceiving dimension, as shown in Figure 10.2. 182 Judging preferences are over-represented amongst women and Perceiving preferences are over-represented amongst men.

250

 $^{^{181}}$ $\chi^2{=}55.54;$ significant at p<0.001. 182 $\chi^2{=}6.54;$ significant at p<0.05.

 OPPassessment sample

 Judging □ Perceiving

 Male (n=550)
 34.0%

 Female (n=365)
 74.0%
 26.0%

Figure 10.2: Gender differences on the J–P dimension

Age

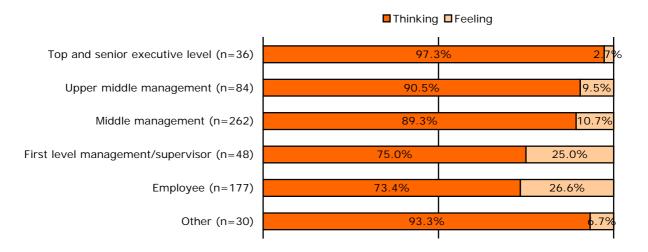
Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, Sensing versus iNtuition, Thinking versus Feeling and Judging versus Perceiving. The OPPassessment sample showed a statistically significant relationship between age and one of the dimensions, ¹⁸³ as shown in Table 10.4. The mean age of people with a preference for Judging was approximately two years higher than of those with a preference for Perceiving.

Table 10.4: Significant mean age differences

	Judging	Perceiving	Difference	Significance
Mean age	42.48	40.38	2.10	**
(years)				

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.


Occupational level

Previous research in other countries has demonstrated that individuals in higher level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower level jobs (Quenk, Hammer and Majors, 2004). This is in part reflected in the relationship of the Thinking–Feeling dimension with occupational level in the OPPassessment sample.

¹⁸³ Independent-samples t-test; significant at p<0.01.

The data suggest that individuals at the top and senior executive levels are most likely to have a preference for Thinking, and the proportion of people with Thinking preferences decreases steadily with occupational level, as shown in Figure 10.3.

Figure 10.3: Thinking–Feeling¹⁸⁴ and occupational level (OPPassessment data)

Education

Specific educational qualifications were not available for the OPPassessment sample; however, the age at which individuals left full-time education was. There was found to be a link between two of the dimensions and the age at which individuals left full-time education. On average, people with preferences for iNtuition and/or Thinking left education approximately two years later than those with a preference for Sensing and/or Feeling.

Work area

Previous research into MBTI Type suggests that an individual's Type influences their choice of career (Hammer, 1998), and indeed there is often found to be a statistically significant relationship between MBTI dimensions and work area. However, at this stage, for the data we have collected there are insufficient numbers of people in each work area category for the analyses to be conducted. This work will be conducted once additional data become available.

 $^{^{184}}$ $\chi^2 = 33.18$; significant at p<0.001.

Nationality

Information on nationality was available for the OPPassessment group, 95% of whom were Norwegian No other nationality was represented in sufficiently large numbers for an analysis of Type differences by nationality to be conducted.

Employment status

Employment status has often been found to show a relationship with MBTI dimensions in other language versions. However, amongst the Norwegian sample 96% of the group reported that they worked full-time. There were insufficient numbers of people who worked part-time or were self-employed for any group-level analyses to be conducted. Once additional data become available it will be possible to conduct this analysis.

Appendix 1: Sample description

Sample 1: Data from OPPassessment (representative Norwegian-speaking professional and managerial sample)

This sample consists of 915 individuals who completed the MBTI Step I instrument in Norwegian via the OPPassessment system between 2004 and mid-2008. Sixty per cent of the respondents were male and 40% were female. Age ranged from 23 to 65 years, with a mean of 42 and a median of 41.

Nationality was disclosed by 80% of respondents. Of these, 95% were Norwegian. No other individual nationality was represented in large numbers.

Nationality	Percentage
Norwegian	95.2%
Other	4.8%

The majority of the group were in full-time employment:

Employment status	Percentage
Full-time	95.6%
Part-time	3.4%
Self-employed	0.6%
Homemaker	0.2%
Retired	0.2%

Many of the group were of managerial level or above, with the largest single group being middle management (41.1%):

Occupational level	Percentage
Top level	5.5%
Senior executive	0.2%
Upper middle management	13.2%
Middle management	41.1%
First level	7.5%
management/supervisor	
Employee	27.8%
Other	4.7%

A range of work areas were represented:

Work area (job type)	Percentage
Finance	20.9%
IT	11.1%
Admin or secretarial	9.9%
Sales, customer service	9.9%
Science, engineering	8.0%
Education	8.0%
Research and development	7.4%
HR, training, guidance	4.7%
Skilled operative	1.3%
Business services	1.1%
Land, sea or air transport	1.1%
Leisure, personal service	0.9%
Military, police, prison, fire	0.5%
Health, social services, etc.	0.3%
Unskilled operative	0.3%
Other private sector	8.9%
Other public sector	2.4%
Other	3.3%

MBTI Step I European Data Suppl	lement
---------------------------------	--------

 $\mathsf{MBTI}^{\mathbb{R}} \; \mathsf{Step} \; \mathsf{I}^{^{\mathsf{TM}}}$

European Data Supplement

Polish

December 2016

MBTI Step I European Data Supplement

Contents

Introduction	259
Type distribution	260
Questionnaire development sample	261
OPPassessment 2010-15 sample	
Internal consistency reliability	263
Intercorrelations between MBTI dimensions	
Validity: the accuracy of the Polish MBTI Step I instrument in	
predicting best-fit Type	265
Group differences in Type	267
Gender	267
Age	268
Occupational level	
Education	272
Work area	272
Nationality	277
Employment status	
Appendix 1: Sample description	279
Sample 1: Questionnaire development sample	
Sample 2: OPPassessment 2010-2015 sample	
Sample 3: OPPassessment Step I sample	

© Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner.

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

® MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

™ Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 ${}^{\circledR}$ OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. ${}^{\intercal}$ OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Introduction

The Polish language version of the MBTI Step I questionnaire was developed and trialled during 2007/8 and since then many more people have completed the questionnaire.

Therefore, data from three different samples were analysed to produce the findings in this chapter. A brief description of each sample is given below. Further details of the samples are provided in Appendix 1.

- Questionnaire development sample: An initial sample of 271 individuals who completed the MBTI Step I instrument in Polish via the OPPassessment system between June 2007 and April 2008. This sample trialled the questionnaire during the initial development of the Polish MBTI Step I questionnaire. This sample was gathered by potential users of the instrument in Poland, and contained the kinds of people with whom the Polish MBTI instrument was used when launched.
- OPPassessment 2010-15 sample: 8,006 individuals who completed either the MBTI Step I or Step II instrument in Polish via the OPPassessment system between 1st January 2010 and 15th September 2015. ¹⁸⁶¹⁸⁷
- OPPassessment Step I reliability sample: 9,889 individuals who completed the MBTI Step I questionnaire in Polish via the OPPassessment system between 1st January 2010 and 15th September 2015. This was used to calculate internal consistency reliability of the MBTI Step I questionnaire. 188

The results of the analyses are outlined below.

¹⁸⁵ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via email and/or completed online.

¹⁸⁶ The MBTI Step II questionnaire comprises the same 88 questions as Step I, as well as an additional 56 questions used to measure 20 facets of behaviour associated with a person's preferences. For this data supplement, only Step I results were used irrespective of whether respondents completed the shorter Step I questionnaire or the longer Step II questionnaire.

shorter Step I questionnaire or the longer Step II questionnaire.

187 The data were downloaded on 16th September 2015 and therefore only includes individuals for whom a report was generated by the 16th September 2015.

a report was generated by the 16th September 2015

188 The data were downloaded on 7th April 2016 and therefore includes individuals for whom a report was generated by the 7th April 2016. This explains why this sample is larger than the previous.

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. Opposite are Type tables for the Polish sample described on the previous page.

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group. An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is underrepresented. Asterisks are used to denote whether the over- or underrepresentations are statistically significant, based on the results of chisquare analysis 189.

Ideally, the Type distribution from a large representative sample of the Polish population would be used to calculate SSRs in this data supplement. However, such a sample does not currently exist. In its place, SSRs have been calculated using Type data from the UK general population (Kendall, 1998). Evidence (eg Hackston and Kendall, 2004; Quenk et al., 2004; Kirby, Kendall and Barger, 2007) does suggest that although Type-related behaviours vary a good deal from country to country and from culture to culture, the frequencies of underlying MBTI Types do not.

 $^{^{189}}$ Chi-square analysis (often abbreviated to $\chi^2)$ is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the UK general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each Type within a particular sample differs significantly from the proportion of people reporting the same Type within the reference group.

Questionnaire development sample

Table 11.1: Type Table for questionnaire development data

Reported Type (n=271)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=35	n=4	n=7	n=14	E	188	64.9%**
12.9%	1.5%	2.6%	5.2%	1	83	30.6%**
SSR=0.94	SSR=0.12**	SSR=1.51	SSR=3.67**			
ISTP	ISFP	INFP	INTP	S	145	53.5%**
n=7	n=2	n=5	n=9	N	126	46.5%**
2.6%	0.7%	1.8%	3.3%	T	203	74.9%**
SSR=0.40*	SSR=0.12**	SSR=0.58	SSR=1.36	F	68	25.1%**
ESTP	ESFP	ENFP	ENTP] '	00	20.170
n=17	n=6	n=19	n=16	J	190	70.1%**
6.3%	2.2%	7.0%	5.9%	P	81	29.9%**
SSR=1.08	SSR=0.25**	SSR=1.11	SSR=2.14**			
ESTJ	ESFJ	ENFJ	ENTJ			
n=68	n=6	n=19	n=37			
25.1%	2.2%	7.0%	13.7%			
SSR=2.41**	SSR=0.18**	SSR=2.55**	SSR=4.65**			

Best-fit Type (n=271)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=40	n=14	n=5	n=11	E	160	59.0%*
16.1%	5.6%	2.0%	4.4%	1	111	41.0%*
SSR=1.17	SSR=0.44**	SSR=1.17	SSR=3.14**			
ISTP	ISFP	INFP	INTP	S	156	57.6%**
n=10	n=15	n=7	n=9	N	115	42.4%**
4.0%	6.0%	2.8%	3.6%	T	165	60.9%
SSR=0.62	SSR=0.98	SSR=0.88	SSR=1.48	F	106	39.1%
ESTP	ESFP	ENFP	ENTP] '	100	37.170
n=12	n=15	n=29	n=25	J	149	55.0%
4.8%	6.0%	11.6%	10.0%	P	122	45.0%
SSR=0.83	SSR=0.69	SSR=1.85**	SSR=3.65**			
ESTJ	ESFJ	ENFJ	ENTJ			
n=43	n=7	n=14	n=15			
17.3%	2.8%	5.6%	6.0%			
SSR=1.66**	SSR=0.22**	SSR=2.04*	SSR=2.05*			

For both tables above: *Difference significant at p<0.05, based on chi-square results. **Difference significant at p<0.01, based on chi-square results.

Looking at reported Type, the most frequent Type preference is quite clearly ESTJ (25% of the total). Overall, the group tends to have a preference for Thinking and Judging, and to a lesser extent for Extraversion and Sensing.

In terms of best-fit Type, ESTJ (17%) is also the most frequently occurring Type preference. However, the proportion is lower than for reported Type, and is closely followed by ISTJ (16%) in terms of frequency. The general pattern is similar to that found with reported Type, with the group tending to have a preference for Extraversion, Sensing, Thinking and Judging. A notable difference, however, is that for all dimensions except Sensing–iNtuition, the proportion of people with preferences for each pole are more evenly balanced than they are for reported Type.

It should be noted that the wider applicability of these Type distributions should not be overstated as the samples on which they are based cannot be considered to be representative of any wider group.

OPPassessment 2010-15 sample

Table 11.2: Type table for 2010–15 data

Reported Type (n=8,006)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=1255	n=151	n=129	n=496	E	5,416	67.6%**
15.7%	1.9%	1.6%	6.2%	1	2,590	32.4%**
SSR=1.15**	SSR=0.15**	SSR=0.94	SSR=4.64**			
ISTP	ISFP	INFP	INTP	S	4,191	52.3%**
n=198	n=33	n=95	n=233	N	3,815	47.7%**
2.5%	0.4%	1.2%	2.9%	_		
SSR=0.39**	SSR=0.07**	SSR=0.38**	SSR=1.21**	T	6,429	80.3%**
ESTP	ESFP	ENFP	ENTP	F	1,577	19.7%**
n=285	n=58	n=364	n=627	1	6,113	76.4%**
3.6%	0.7%	4.5%	7.8%	P	1,893	23.6%**
SSR=0.62**	SSR=0.08**	SSR=0.71**	SSR=2.79**		.,0,0	20.070
ESTJ	ESFJ	ENFJ	ENTJ			
n=1919	n=292	n=455	n=1416			
24.0%	3.6%	5.7%	17.7%			
SSR=2.31**	SSR=0.29**	SSR=2.04**	SSR=6.10**			

Internal consistency reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. Internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for both the Polish questionnaire development sample and the OPPassessment Step I reliability sample are shown in Table 11.3.

Table 11.3: Internal consistency reliability

Dimension	Coefficient alpha- questionnaire development sample (n=271)	Coefficient alpha- OPPassessment Step I reliability sample (n=9,889)
E-I	0.86	0.86
S-N	0.77	0.80
T–F	0.82	0.81
J_P	0.80	0.81

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. ¹⁹⁰ On this basis, all of the dimensions of the questionnaire show good reliability.

¹⁹⁰ For example, see Nunnally (1978) or Kline (2000).

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire.

The intercorrelations between dimensions amongst the OPPassessment 2010–15 sample are shown in Table 11.4. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores. ¹⁹¹

Table 11.4: Intercorrelations between dimensions

	E-I	S-N	T-F	J-P
E-I		-0.22**	-0.17**	-0.08**
S-N			0.31**	0.41**
T-F				0.23**
J-P				

^{**}Significant at p<0.01.

The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving.

In addition, for this sample, there are other relationships between dimensions. E–I has been shown to correlate negatively with S–N, T–F and J–P. This suggests that a preference for Introversion is more likely to be associated with a preference for Sensing, Thinking and Judging whilst a preference for Extraversion is likely to be associated with a preference for iNtuition, Feeling and Perceiving. S–N has also been shown to correlate reasonably highly with T–F, suggesting that a preference for Sensing is likely to be associated with a preference for Thinking, and that a preference for iNtuition is likely to be associated with a preference for Feeling. Finally, T–F has been shown to correlate with J–P suggesting that a preference for Feeling is likely to be associated with a preference for Perceiving.

¹⁹¹ Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

Validity: the accuracy of the Polish MBTI Step I instrument in predicting best-fit Type

The purpose of the MBTI instrument is to help individuals to establish their validated or 'best-fit' psychological Type. A key measure of the validity of the instrument is, therefore, how well the results relate to best-fit (validated) Type. These data are useful to practitioners in knowing how typically accurate the reported result is likely to be.

Best-fit data are available for a sample of MBTI practitioners who took part in a research study to look at the relationship between MBTI reported Type and best-fit Type.

Table 11.5 presents the results of the analysis comparing best-fit with reported Type. The Polish questionnaire performs in a similar way to other language versions for which best-fit data are available, and there is good evidence for the accuracy of the instrument. In nearly 50% of cases, a respondent's reported Type will match their best-fit Type, and in nearly 80% of cases at least three of the four preferences will match.

Table 11.5: Match of reported and best-fit Type

	Polish questionnaire development sample		
	(n=271)		
Agrees with all four letters	48.3%	78.9%	
Agrees with three letters	30.6%	70.970	
Agrees with two letters	16.2%		
Agrees with one letter	4.1%	21.1%	
Agrees with no letters	0.8%		

Dimension	Percentage	
	agreement	
E-I	84.5%	
S-N	81.2%	
T–F	79.3%	
J_P	76.8%	

Further analysis was carried out to investigate the validity and accuracy of the questionnaire. MBTI qualifying training course participants and MBTI practitioners were asked how confident they felt about their results on each Type dichotomy (on a scale from 1 to 5, where 5 indicated the highest degree of confidence). For every dimension, more than two-thirds of the group were confident about their Type.

All these figures provide further support for the validity of the MBTI approach. Detailed results are shown in Table 11.6.

Table 11.6: Degree of confidence in results

Degree of	Р	Percentage of group		
confidence	E-I	S-N	T-F	J-P
5 (highest)	44%	31%	38%	40%
4	31%	38%	34%	30%
3	18%	26%	22%	22%
2	6%	4%	4%	7%
1 (lowest)	1%	1%	2%	1%
Percentage at 4 or	75%	69%	72%	70%
above				

In summary, there is good evidence for the validity of the Polish MBTI Step I instrument. Specifically:

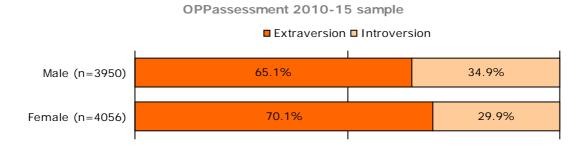
- There is a high level of agreement between best-fit and reported Type, comparable with results for other European language versions.
- Respondents are confident about their results.

Group differences in Type

Various types of demographic information were collected for the OPPassessment 2010–15 sample. The relationship of MBTI Type to each of these factors is described below.

Gender

Most groups who take the MBTI questionnaire show a significant gender difference on the Thinking–Feeling dimension, and this is the case for the group in this study, as shown in Figure 11.9. 192


When compared with the T–F distribution in the combined sample, Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women (although even amongst women in this group there are more people with a preference for Thinking than Feeling). This effect has been found many times with many different versions of the instrument in a number of different cultures.

For this sample, there was also a significant gender difference on the Extraversion–Introversion dimension and the Sensing–iNtuition dimension.

When compared with the E–I distribution in the combined sample, Introversion preferences are over-represented amongst men and Extraversion preferences are over-represented amongst women (even though the group overall has more people with a preference for Extraversion than Introversion).

When compared with the S–N distribution in the combined sample, iNtuition preferences are over-represented amongst men and Sensing preferences are over-represented amongst women.

Figure 11.7: Gender differences on the E-I dimension

 $^{^{192} \}chi^2 = 6.57$; significant at p<0.01.

Figure 11.8: Gender differences on the S–N dimension

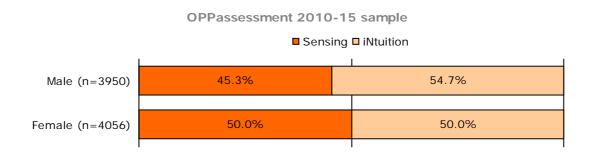
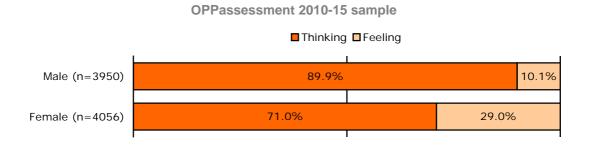



Figure 11.9: Gender differences on the T–F dimension

Age

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, for Sensing versus iNtuition, for Thinking versus Feeling and for Judging versus Perceiving. The sample showed statistically significant relationships between age and three of the dimensions, ¹⁹³ as shown in Table 11.10. The mean age of people with a preference for Introversion was approximately half a year higher than of those with a preference for Sensing was approximately half a year higher than of those with a preference for iNtuition. The mean age of those with a preference for Judging was approximately one and a half years higher than of those with a preference for Perceiving. These differences, although statistically significant, are fairly small and so may not be outwardly

268

¹⁹³ Independent-samples t-tests; SN significant at p<0.01, JP significant at p<0.001.

obvious. They are, however, in line with the previous research in this area.

Table 11.10: Significant mean age differences

	Extraversion	Introversion	Difference	Significance
Mean age (years)	35.37	35.77	0.40	*

	Sensing	iNtuition	Difference	Significance
Mean age (years)	35.81	35.16	0.65	***

	Judging	Perceiving	Difference	Significance
Mean age (years)	35.82	34.45	1.37	***

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.

Occupational level

Previous research in other countries has demonstrated that individuals in higher level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower level jobs (Quenk, Hammer and Majors, 2004).

This is reflected in the relationship of the Sensing–iNtuition and Thinking–Feeling dimensions with occupational level in the OPPassessment 2010–15 sample.

In this sample, there was also a relationship between Extraversion–Introversion and occupational level. Those in higher level jobs in organisations are more likely to have a preference for Extraversion than those in lower level jobs.

Figure 11.11: Extraversion-Introversion and Occupational Level (2010-2015 sample)

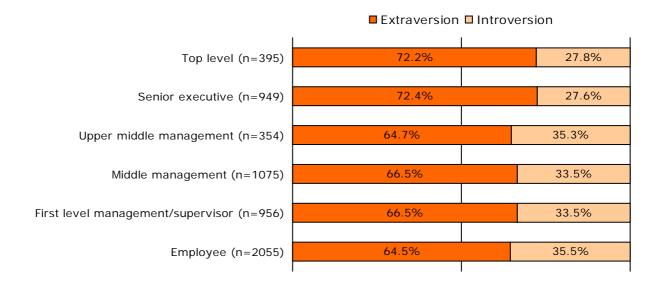


Figure 11.12: Sensing-iNtuition and Occupational Level (2010-2015 sample)

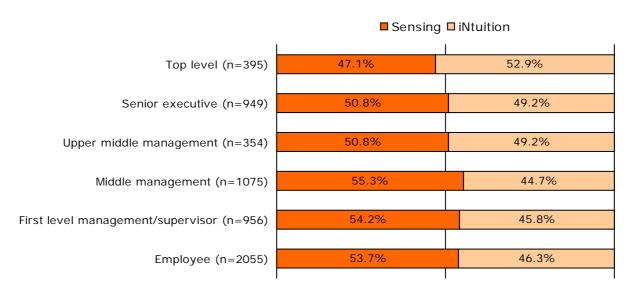
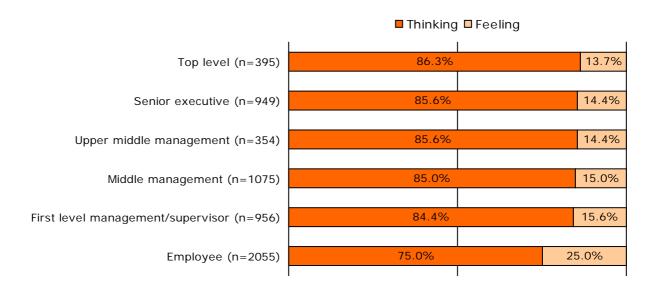



Figure 11.13: Thinking-Feeling and Occupational Level (2010-2015 sample)

Education

Specific educational qualifications were not available for the sample; however, the age at which individuals left full-time education was. Those who left full-time education at an older age were significantly more likely to have preferences for Extraversion and/or iNtuition. However, although statistically significant, the differences were all less than one year in real terms.

Work area

Previous research into MBTI Type suggests that an individual's Type influences their choice of career (Hammer, 1998) and indeed the data in this supplement show that there is a statistically significant relationship between all four dimensions and work area. In the figures that follow, categories have been re-ordered according to the percentage of people with E, S, T or J preferences (work areas with fewer than 100 respondents have been omitted as have undefined work areas described as 'Other').

 $^{^{194}}$ Based on independent-samples t-tests; significant at the p<0.001 (for Extraversion-Introversion) and p=0.001 (for Sensing-iNtuition) level.

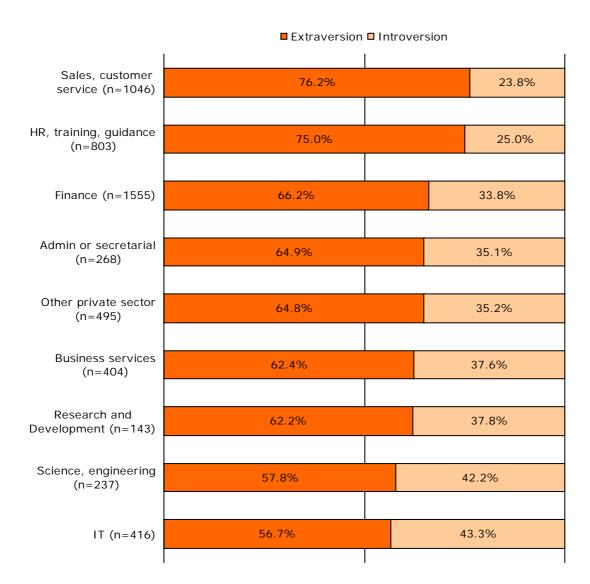
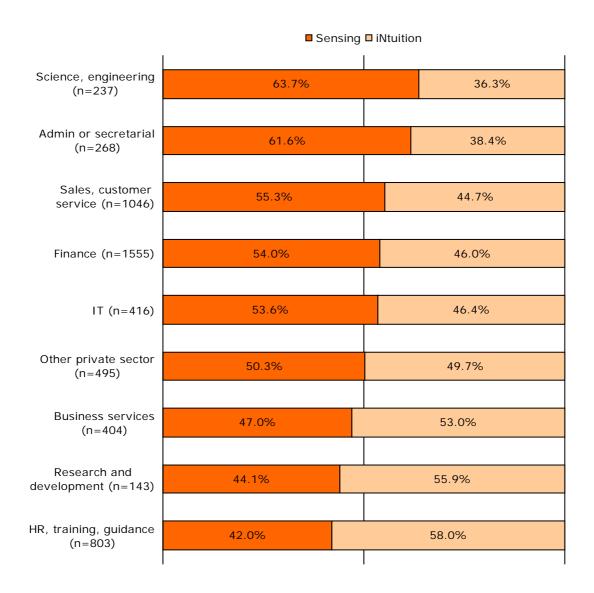
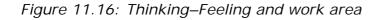




Figure 11.14: Extraversion-Introversion and work area

Figure 11.15: Sensing-iNtuition and work area

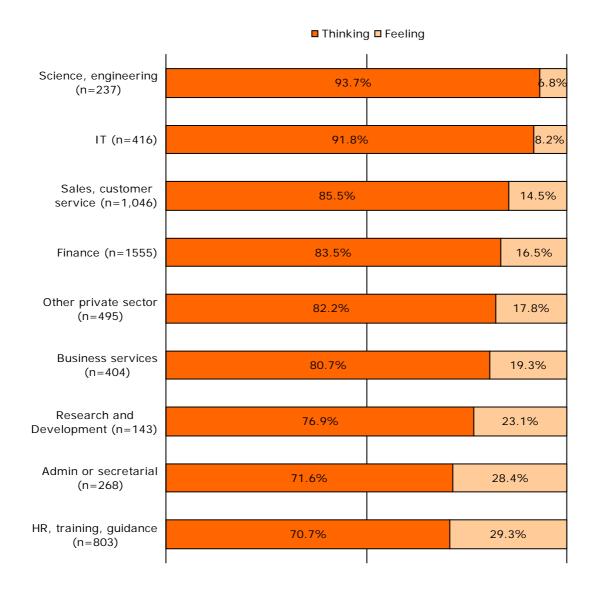
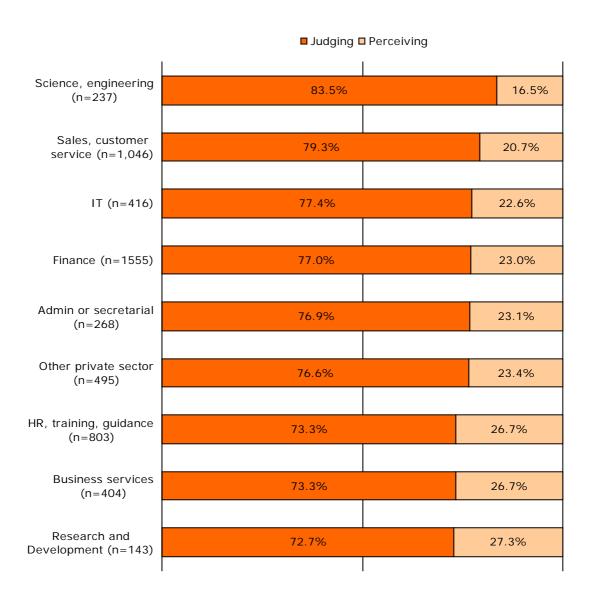
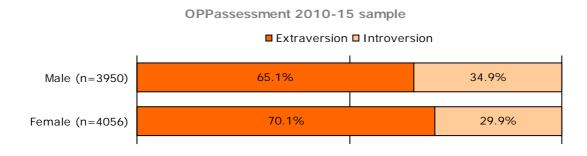



Figure 11.17: Judging-Perceiving and work area

Nationality


Only a limited number of people disclosed their nationality. However, 84% of the sample indicated their country of residence. Of these, 97% were from Poland. No other country was represented in sufficiently large numbers for an analysis of Type differences by country to be conducted.

Employment status

82% of the sample disclosed their employment status (ie whether they worked full-time, part-time etc). 94% of these said they worked full-time whilst 6% said they were self-employed. The numbers of people in other categories were too small to be included in the analysis.

There was a statistically significant relationship between employment status and three of the four dichotomies, with the exception of Extraversion–Introversion. The figures below show that Sensing, Thinking and Judging are over-represented in full-time employees, whilst iNtuition, Feeling and Perceiving are over-represented in those who are self-employed. 195

Figure 11.18: Sensing-iNtuition and employment status

 195 Chi-squared test showed s significant relationship at the p<0.001 level (Sensing-iNtuition, Thinking-Feeling) and the p<0.01 level (Judging-Perceiving)

Figure 11.19: Thinking-Feeling and employment status

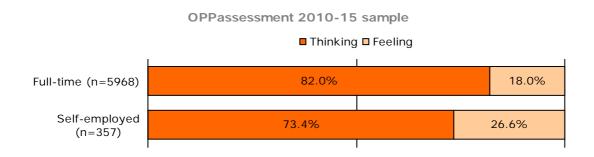
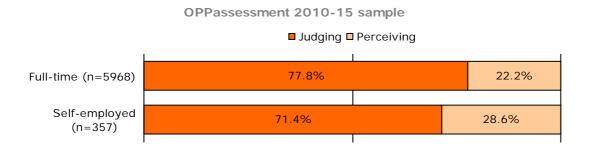



Figure 11.20: Judging-Perceiving and employment status

Appendix 1: Sample description

Sample 1: Questionnaire development sample

This sample consists of 271 individuals who completed the MBTI Step I questionnaire in Polish via the OPPassessment system between June 2007 and April 2008. Of these individuals, 54% were female and 46% were male. Age ranged from 16 to 60 years, with a mean of 31 and a median of 29.

Nationality was disclosed by 76% of respondents. Of these, 97% were Polish. No other individual nationality was represented in large numbers.

Nationality	Percentage
Polish	97.1%
Other	2.9%

The majority of those who disclosed their employment status were in full-time employment:

Employment status	Percentage
Full-time	44.0%
Part-time	5.5%
Self-employed	6.6%
Unemployed	5.5%
Retired	0.4%
Homemaker	0.0%
Not disclosed	38.0%

Of those who disclosed their occupational level, many were of managerial level or above, although the largest single group was employee level (20.3%):

Occupational level	Percentage
Top level	3.7%
Senior executive	9.2%
Upper middle management	0.4%
Middle management	4.8%
First-level	8.5%
management/supervisor	
Employee	20.3%
Other	12.2%
Not disclosed	40.9%

A range of work areas were represented:

Work area (job type)	Percentage
Sales, customer service	12.2%
Finance	11.4%
HR, training, guidance	5.2%
Admin or secretarial	3.3%
Health, social services, etc	1.8%
IT	1.8%
Education	1.8%
Science, engineering	1.5%
Research and development	1.1%
Military, police, prison, fire	0.4%
Skilled operative	0.4%
Land, sea or air transport	0.4%
Unskilled operative	0.0%
Business services	0.0%
Leisure, personal service	0.0%
Other public sector	0.4%
Other private sector	4.4%
Other	10.0%
Not disclosed	38.7%

Sample 2: OPPassessment 2010–2015 sample

This sample consists of 8006 individuals who completed the MBTI Step I questionnaire in Polish via the OPPassessment system between the 1st January 2010 and 15th September 2015.

The data were downloaded on 16th September 2015 and therefore only includes individuals for whom a report was generated by the 16th September 2015.

Of these individuals, 51% were female and 49% were male. Age ranged from 14 to 80 years, with a mean of 35 and a median of 36.

Country of residence was disclosed by 84% of respondents. Of these, 97% were from Poland. No other individual country was represented in large numbers.

Country	Percentage
Polish	96.7%
Other	3.3%

The majority of those who disclosed their employment status were in full-time employment:

Employment status	Percentage
Full-time	74.5%
Self-employed	4.5%
Unemployed	1.5%
Part-time	1.1%
Retired	0.1%
Homemaker	0.1%
Not disclosed	18.1%

Of those who disclosed their occupational level, many were of managerial level or above, although the largest single group was employee level (25.7%).

Occupational level	Percentage
Top level	4.9%
Senior executive	11.9%
Upper middle management	4.4%
Middle management	13.4%
First-level	11.9%
management/supervisor	
Employee	25.7%
Other	7.6%
Not disclosed	20.1%

A range of work areas were represented:

Work area (job type)	Percentage			
Finance	19.4%			
Sales, customer service	13.1%			
HR, training, guidance	10.0%			
IT 5.2				
Business services 5.0%				
Admin or secretarial	secretarial 3.3%			
Science, engineering 3.0%				
Research and development 1.8%				
Education	1.0%			
Land, sea or air transport	1.0%			
Health, social services etc	0.6%			
Skilled operative	0.3%			
Military, police, prison, fire 0.2%				
Leisure, personal service	0.1%			
Unskilled operative	0.1%			
Other public sector 0.69				
Other private sector 6.2%				
Other	10.0%			
Undisclosed	19.1%			

Sample 3: OPPassessment Step I reliability sample

This sample consists of 9,889 individuals who completed the MBTI Step I questionnaire in Polish via the OPPassessment system between the 1st January 2010 and 15th September 2015.

The data were downloaded on 7th April 2016 and therefore includes individuals for whom a report was generated by the 7th April 2016. This explains why this sample is larger than the previous sample. The sample was used to calculate internal consistency reliability of the MBTI Step I questionnaire.

Of these individuals, 53% were female and 47% were male. Age ranged from 16 to 67 years, with a mean of 34 and a median of 33.

Country of residence was disclosed by 88% of respondents. Of these, 91% were from Poland. No other individual country was represented in large numbers.

Country	Percentage		
Poland	91%		
Other	8.0%		

The majority of those who disclosed their employment status were in full-time employment:

Employment status	status Percentage		
Full-time	60.8%		
Self-employed	3.7%		
Unemployed	1.3%		
Part-time	1.0%		
Homemaker	0.1%		
Not disclosed	33.1%		

Of those who disclosed their occupational level, many were of managerial level or above, although the largest single group was employee level (21.5%).

Occupational level	Percentage			
Top level	3.8%			
Senior executive	9.3%			
Upper middle management	3.4%			
Middle management 10.6%				
First-level	9.9%			
management/supervisor				
Employee	21.5%			
Other	6.2%			
Not disclosed	35.3%			

 $\mathsf{MBTI}^{\mathbb{R}}$ Step I^{m} instrument

European Data Supplement

Portuguese (European)

December 2016

MBTI Step I European Data Supplement

Contents

Introduction	284
Type distribution	286
OPPassessment 2010-15 sample	
Internal consistency reliability	
Intercorrelations between MBTI dimensions	
Validity: the accuracy of the Portuguese (European) MBTI Step I	
instrument in predicting best-fit Type	290
Group differences in Type	291
Gender	
Age	292
Occupational level	293
Education	
Work area	294
Nationality	297
Employment status	298
Appendix 1: Sample descriptions	299
Sample 1 : OPPassessment 2010-15 sample	299
Sample 2: OPPassessment Step I reliability sample	300

© Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner.

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

® MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 $^{\text{TM}}$ Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 \circledR OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. \urcorner OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Introduction

Data from two samples were analysed to produce the findings in this chapter. A brief description of each sample is given below. Further details of the samples are provided in Appendix 1.

- OPPassessment 2010-15 sample: 3,427 individuals who completed the MBTI Step I instrument in Portuguese (European) via the OPPassessment system between the 1st January 2010 and 15th September 2015. 196 197
- OPPassessment Step I reliability sample: 3,751 individuals who completed the MBTI Step I questionnaire in Portuguese via OPPassessment between 2010 and 2015. Data from this sample was used to conduct internal consistency reliability analysis.

The results of the analyses are outlined below.

¹⁹⁶ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via email and/or completed online.

email and/or completed online.

197 The data were downloaded on 16th September 2015 and therefore only include individuals who generated an MBTI report by 16th September 2015.

generated an MBTI report by 16th September 2015.

198 The data were downloaded on 7th April 2016 and includes individuals who generated an MBTI report by 7th April 2016, which explains why this sample is larger than the above sample.

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. Opposite are Type tables for the Portuguese (European) sample described on the previous page.

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group. An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is underrepresented. Asterisks are used to denote whether the over- or underrepresentations are statistically significant, based on the results of chisquare analysis 199.

Ideally, the Type distribution from a large representative sample of the Portuguese population would be used to calculate SSRs in this data supplement. However, such a sample does not currently exist. In its place, SSRs have been calculated using Type data from the UK general population (Kendall, 1998). Evidence (eg Hackston and Kendall, 2004; Quenk et al., 2004; Kirby, Kendall and Barger, 2007) does suggest that although Type-related behaviours vary a good deal from country to country and from culture to culture, the frequencies of underlying MBTI Types do not.

 $^{^{199}}$ Chi-square analysis (often abbreviated to $\chi^2)$ is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the UK general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each Type within a particular sample differs significantly from the proportion of people reporting the same Type within the reference group.

OPPassessment 2010-15 sample

Table 12.1: Type table for OPPassessment 2010-15 data

Reported Type (n=3427)

				1 -		0.4
ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=577	n=75	n=27	n=133	E	2402	70.1%**
16.8%	2.2%	0.8%	3.9%	1	1025	29.9%**
SSR=1.23**	SSR=0.17**	SSR=0.47**	SSR=2.79**			
ISTP	ISFP	INFP	INTP	S	2464	71.9%*
n=97	n=25	n=12	n=79	N	963	28.1%**
2.8%	0.7%	0.4%	2.3%			
SSR=0.44**	SSR=0.11**	SSR=0.13**	SSR=0.96	T	2772	80.9%**
ESTP	ESFP	ENFP	ENTP	F	655	19.1%**
n=231	n=100	n=116	n=172	1.	0505	75 70/++
6.7%	2.9%	3.4%	5.0%	J	2595	75.7%**
SSR=1.16*	SSR=0.33**	SSR=0.54**	SSR=1.79**	P	832	24.3%**
ESTJ	ESFJ	ENFJ	ENTJ			
n=1147	n=212	n=88	n=336			
33.5%	6.2%	2.6%	9.8%			
SSR=3.22**	SSR=0.49**	SSR=0.93	SSR=3.38**			

^{*}Difference between Portuguese data and UK general population significant at p<0.05, based on chi-square results.

Looking at reported Type, the most frequent Type preference is ESTJ (34% of the total), followed by ISTJ (17%). Overall, the group tends to have a preference for Extraversion, Sensing, Thinking and Judging.

It should be noted that the wider applicability of these Type distributions should not be overstated as the samples on which they are based cannot be considered to be representative of any wider group. Further Type distribution data will be added to this supplement as it becomes available.

^{**}Difference significant at p<0.01, based on chi-square results.

Internal consistency reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. Internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for the Portuguese OPPassessment Step I sample are shown in Table 12.2.

Table 12.2: Internal consistency reliability

Coefficient alpha		
0.84		
0.73		
0.73		
0.77		

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. ²⁰⁰ On this basis, all of the dimensions of the questionnaire show good reliability.

288

²⁰⁰ For example, see Nunnally (1978) or Kline (2000).

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire.

The intercorrelations between dimensions amongst the OPPassessment sample are shown in Table 12.3. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores. ²⁰¹

	E-I	S-N	T-F	J-P
E-I		-0.11**	-0.22**	-0.08**
S-N			0.15**	0.33**
T-F				0.23**
LD				

Table 12.3: Intercorrelations between dimensions

The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving.

In addition, for this sample, there are weak correlations between T-F and J-P and between T-F and E-I. Thinking is likely to be associated with a preference for Judging and/or a preference for Introversion, whilst Feeling is likely to be associated with a preference for Perceiving and/or a preference for Extraversion.

There are also very weak correlations between E–I and S–N, E–I and J–P, and S–N and T–F. This suggests that, in this sample, Extraversion is associated with a preference for iNtuition and/or a preference for Perceiving, whilst Introversion is associated with a preference for Sensing and/or a preference for Judging. Sensing is also more likely to be associated with a preference for Thinking whilst iNtuition is associated with Feeling.

^{**}Significant at *p<0.05, **p<0.01.

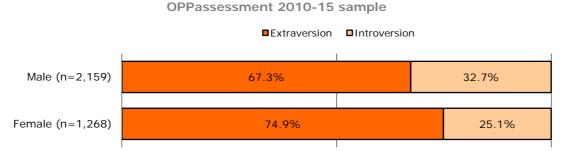
²⁰¹ Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

At present, we do not have sufficient data to know whether these reflect a true relationship amongst people who take the Portuguese questionnaire, or whether the findings are sample-specific. This will be explored once more data become available.

Validity: the accuracy of the Portuguese (European) MBTI Step I instrument in predicting best-fit Type

The purpose of the MBTI instrument is to help individuals to establish their validated or 'best-fit' psychological Type. A key measure of the validity of the instrument is, therefore, how well the results relate to best-fit (validated) Type. These data are useful to practitioners in knowing how typically accurate the reported result is likely to be.

Best-fit data are not yet available for the Portuguese (European) language version of the MBTI instrument. This will be explored once such data becomes available.


Group differences in Type

Various types of demographic information were collected for the Portuguese OPPassessment 2010–15 sample. The relationship of MBTI Type to each of these factors is described below.

Gender

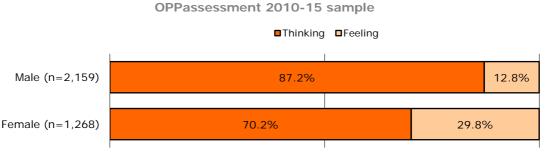
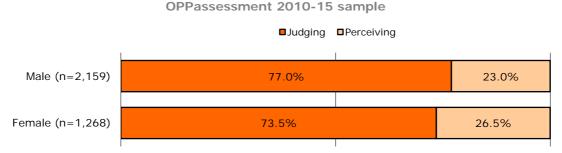

Most groups who take the MBTI questionnaire show a significant gender difference on the Thinking–Feeling dimension, and this is the case for the group in this study, as shown in Figure 12. For this sample, there were also gender differences on the Extraversion–Introversion and Judging–Perceiving dimensions. ²⁰²

Figure 12.4: Gender differences on the E-I dimension

When compared with the E-I distribution in the combined sample, Introversion preferences are over-represented amongst men and Extraversion preferences are over-represented amongst women (although even amongst men in this group there are more people with a preference for Extraversion than Introversion).

Figure 12.5: Gender differences on the T–F dimension



When compared with the T-F distribution in the combined sample, Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women (although even

 $^{^{202}}$ Extraversion–Introversion: $\chi^2{=}22.40;$ significant at p<0.001. Thinking–Feeling: $~\chi^2{=}148.99;$ significant at p<0.001. Judging–Perceiving: $\chi^2{=}5.40;$ significant at p<0.05.

amongst women in this group there are more people with a preference for Thinking than Feeling). This effect has been found many times with many different versions of the instrument in a number of different cultures.

Figure 12.6: Gender differences on the J–P dimension

When compared with the J–P distribution in the combined sample, Judging preferences are over-represented amongst men and Perceiving preferences are over-represented amongst women (although even amongst women in this group there are more people with a preference for Judging than Perceiving).

Age

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, for Sensing versus iNtuition, for Thinking versus Feeling and for Judging versus Perceiving.

The sample showed statistically significant relationships between age and two of the preference pairs: Thinking–Feeling and Judging–Perceiving. Those with a Thinking preference were, on average, almost two years older than those with a Feeling preference. Those with a Judging preference were, on average, over one year older than those with a Perceiving preference.²⁰³

²⁰³ For Thinking–Feeling: t (3425)=4.94, p<0.001; For Judging–Perceiving: t(3425)=3.35, p<0.001.

Figure 12.7: Age differences on the T–F dimension

	Thinking	Feeling	Difference	Significance
Mean age (years)	39.28	37.44	1.83	**

Figure 12.8: Age differences on the J–P dimension

	Judging	Perceiving	Difference	Significance
Mean age (years)	39.20	38.06	1.14	* *

Occupational level

Previous research in other countries has demonstrated that individuals in higher level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower level jobs (Quenk, Hammer and Majors, 2004). However, for the Portuguese sample, no significant relationships were found between occupational level and MBTI preference.

Education

Specific educational qualifications were not available for the sample; however, the age at which individuals left full-time education was available. There was found to be a link between age at which a person left full-time education and whether they had a Sensing or iNtuition preference. Those with an iNtuition preference left education later than those with a Sensing preference. It is worth noting that although this difference is statistically significant, the difference is less than half a year in real terms.

 $^{^{204}}$ t(2953)=-3.80, p<0.001

Figure 12.9: Difference in age left full-time education for the S–N dimension

	Sensing	iNtuition	Difference	Significance
Mean age (years)	21.74	22.21	0.46	**

Work area

Previous research into MBTI Type suggests that an individual's Type influences their choice of career (Hammer, 1998), and indeed data in this supplement show there is a statistically significant relationship between work area and two of the MBTI dimensions: E–I and T–F²⁰⁵. In the figures that follow, categories have been re-ordered according to the percentage of people with E or T preferences. Work areas with fewer than 50 respondents have been omitted as have undefined work areas described as 'other'.

 $^{^{205}}$ For Extraversion–Introversion, $\chi^2{=}\,34.88;$ significant at p<0.001 For Thinking–Feeling, $\chi^2{=}\,61.99;$ significant at p<0.001

Figure 12.10: Extraversion-Introversion and work area

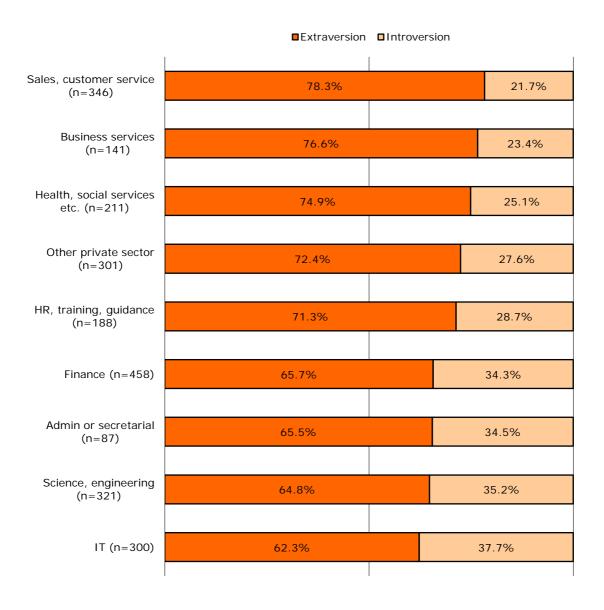
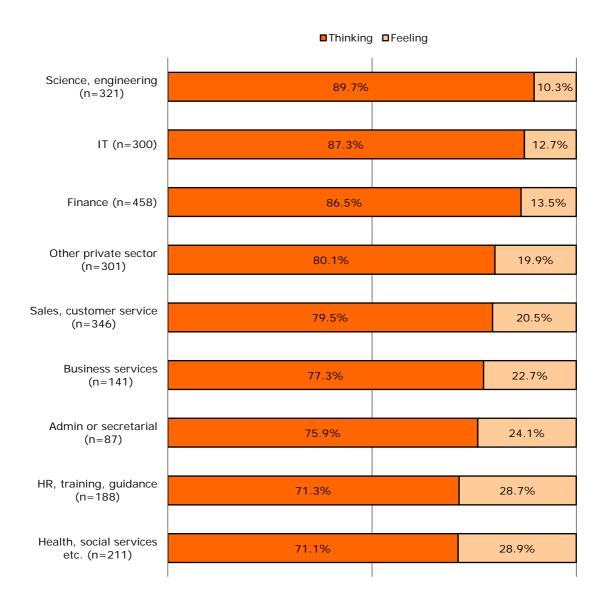
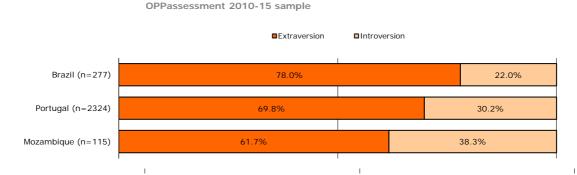



Figure 12.11: Thinking-Feeling and work area



Nationality

Nationality was disclosed by 98% of the sample, 80% of which were Portuguese. However, no other nationality was disclosed in large enough numbers to conduct analyses on nationality. Instead, country of residence was used. Countries with fewer than 100 respondents were omitted as were undefined countries described as 'other'. The analysis therefore looked for differences in preference between three countries: Portugal, Brazil and Mozambique.

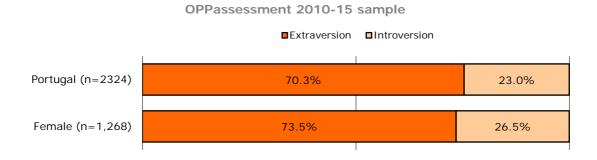
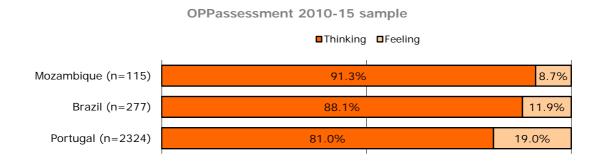

Significant relationships were found for all four dimensions²⁰⁶. In the figures that follow, categories have been re-ordered according to the percentage of people with E, S, T or J preferences.

Figure 12.12: E-I and country of residence

When compared with the E-I distribution in the combined sample, Extraversion preferences are over-represented in Brazil and Introversion preferences are over-represented in Mozambique (although in all three countries there are more people with a preference for Extraversion).


Figure 12.13: S–N and country of residence

²⁰⁶ For Extraversion–Introversion, χ^2 =12.14; significant at p<0.01; for Sensing-iNtuition, χ^2 =7.82; significant at p<0.05; for Thinking–Feeling, χ^2 =15.39; significant at p<0.001; for Judging–Perceiving, χ^2 =17.11; significant at p<0.001

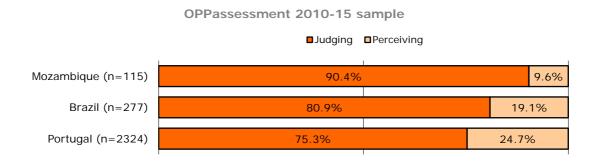

When compared with the S–N distribution in the combined sample, Sensing preferences are over-represented in Mozambique and Brazil (even though in all three countries there are more people with a preference for Sensing).

Figure 12.14: T-F and country of residence

When compared with the T–F distribution in the combined sample, Thinking preferences are over-represented in Mozambique and Brazil.

Figure 12.15: J-P and country of residence

When compared with the J–P distribution in the combined sample, Judging preferences are over-represented in Mozambique and Brazil.

Employment status

Employment status (ie whether a person works full-time, part-time, is self-employed, etc) was disclosed by 85% of the sample. Of these, 96% were working full-time. No other employment status was represented in sufficiently large numbers for an analysis of Type differences by employment status to be conducted.

Appendix 1: Sample descriptions

Sample 1: OPPassessment 2010-15 sample

This sample consists of 3,427 individuals who completed the MBTI Step I or Step II questionnaire in Portuguese (European) via the OPPassessment system between 1st January 2010 and 15th September 2015.

The data was downloaded on 16th September 2015 and therefore only includes individuals who generated an MBTI report by 16th September 2015.

Of these individuals, 37% were female and 63% were male. Age ranged from 19 to 71 years, with a mean of 39 and median of 38 years.

Nationality was disclosed by 98% of respondents. Of these, 80% were Portuguese. No other individual nationality was represented in large numbers.

Country of residence was disclosed by 86% of respondents. Of these, 68% were from Portugal, 8% were from Brazil and 3% were from Mozambique.

Country of residence	Percentage
Portugal	67.8%
Brazil	8.1%
Mozambique	3.4%
Other	6.0%
Not disclosed	14.4%

The majority of those who disclosed their employment status were in full-time employment:

Employment status	Percentage
Full-time	81%
Self-employed	2.1%
Unemployed	1.1%
Part-time	0.5%
Homemaker	0.1%
Retired	0.0%
Not disclosed	15.5%

Of those who disclosed their occupational level, many were of managerial level or above, although the largest single group was employee level (16.3%):

Occupational level	Percentage
Top level	12.0%
Senior executive	8.2%
Upper middle management	11.5%
Middle management	9.6%
First-level	9.5%
management/supervisor	
Employee	16.3%
Not disclosed	32.9%

A range of work areas were represented:

Work area (job type)	Percentage
Finance	13.4%
Sales, customer service	10.1%
Science, engineering	9.4%
IT	8.8%
Other private sector	8.8%
Health, social services etc.	6.2%
HR, training, guidance	5.5%
Business services	4.1%
Admin or secretarial	2.5%
Land, sea or air transport	1.4%
Skilled operative	1.2%
Other public sector	1.2%
Research and development	0.7%
Education	0.4%
Leisure, personal service	0.1%
Unskilled operative	0.1%
Military, police, prison, fire	0.0%
Other	8.3%
Not disclosed	17.9%

Sample 2 : OPPassessment Step I reliability sample

This sample consists of 3,751 individuals who completed the MBTI Step I questionnaire in Portuguese (European) via the OPPassessment system between 1st January 2010 and 15th September 2015.

The data was downloaded on 7th April 2016 and includes individuals who generated an MBTI report by 7th April 2016, which explains why this sample is larger than sample 1.

Of these individuals, 38% were female and 62% were male. Age ranged from 20 to 71 years, with a mean of 39 and median of 38 years.

Nationality was disclosed by 91.2% of respondents. Of these, 81% were Portuguese. No other individual nationality was represented in large numbers.

The majority of those who disclosed their employment status were in full-time employment:

Employment status	Percentage
Full-time	75.2%
Self-employed	1.9%
Unemployed	1.0%
Part-time	0.5%
Homemaker	0.1%
Retired	0.0%
Not disclosed	21.3%

Of those who disclosed their occupational level, many were of managerial level or above, although the largest single group was employee level (16.3%):

Occupational level	Percentage
Top level	11.2%
Senior executive	7.7%
Upper middle management	10.6%
Middle management	9.0%
First-level	8.8%
management/supervisor	
Employee	15.2%
Not disclosed	37.5%

MBTI Step I	European	Data Supp	lement
-------------	----------	-----------	--------

 $\mathsf{MBTI}^{\mathbb{R}}$ Step I^{m} instrument

European Data Supplement

Russian

December 2016

MBTI Step I European Data Supplement

Contents

European Data Supplement	303
June 2016	303
Contents	304
Introduction	305
Type distribution	306
Questionnaire development sample	307
2010-2015 OPPassessment sample	308
Internal consistency reliability	309
Intercorrelations between MBTI dimensions	310
Validity: the accuracy of the Russian MBTI Step I instrument in	
predicting best-fit Type	312
Group differences in Type	314
Gender	314
Age	315
Occupational level	317
Education	320
Work area	321
Country of residence	326
Employment status	326
Appendix 1: Sample description	327
Sample 1: Questionnaire development sample	327
Sample 2: OPPassessment 2010-15 sample	328
Sample 3: OPPassessment Step I reliability sample	329

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

® MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

™ Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

® OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. ™ OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

[©] Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

Introduction

The Russian-language version of the MBTI Step I questionnaire was developed and trialled between 2006 and 2010, and since then many more people have completed the questionnaire.

Therefore, data from three different samples were analysed to produce the findings in this chapter. A brief description of each sample is given below. Further details of the samples are provided in Appendix 1.

- Questionnaire development sample: 201 individuals who completed the MBTI Step I instrument in Russian via the OPPassessment system between January 2007 and November 2009.²⁰⁷ This sample was gathered by potential users of the instrument in Russia, and contained the kinds of people with whom the Russian MBTI instrument was used when launched.
- OPPassessment 2010–15 sample: 7,844 individuals who completed either the Russian MBTI Step I or Step II questionnaire via OPPassessment between January 2010 and September 2015.²⁰⁸²⁰⁹
- OPPassessment Step I reliability sample: 7,695 individuals who completed the Russian MBTI Step I questionnaire via OPPassessment between 1st January 2010 and 15th September 2015.²¹⁰ This sample was used to calculate the internal consistency reliability of the MBTI Step I questionnaire.

The results of the analyses are outlined below.

²⁰⁸ The data were downloaded on 16th September 2015 and therefore comprises individuals for whom MBTI reports were generated by 16th September 2015.

 $^{^{207}}$ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via email and/or completed online.

²⁰⁹ The MBTI Step II questionnaire comprises the same 88 questions as Step I, as well as an additional 56 questions used to measure 20 facets of behaviour associated with a person's preferences. For this data supplement, only Step I results were used irrespective of whether respondents completed the shorter Step I questionnaire or the longer Step II questionnaire.

²¹⁰ The data were downloaded on 7th April 2016 and therefore comprises individuals for whom MBTI

The data were downloaded on 7th April 2016 and therefore comprises individuals for whom MBTI reports were generated by 7th April 2015

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. On the following pages are Type tables for the Russian samples described on the previous page.

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group. An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is underrepresented. Asterisks are used to denote whether the over- or underrepresentations are statistically significant, based on the results of chisquare analysis 211.

Ideally, the Type distribution from a large representative sample of the Russian population would be used to calculate SSRs in this data supplement. However, such a sample does not currently exist. In its place, SSRs have been calculated using Type data from the UK general population (Kendall, 1998). Evidence (eg Hackston and Kendall, 2004; Quenk et al., 2004; Kirby, Kendall and Barger, 2007) does suggest that although Type-related behaviours vary a good deal from country to country and from culture to culture, the frequencies of underlying MBTI Types do not.

 $^{^{211}}$ Chi-square analysis (often abbreviated to $\chi^2)$ is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the UK general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each Type within a particular sample differs significantly from the proportion of people reporting the same Type within the reference group.

Questionnaire development sample

Table 13.1: Type table for questionnaire development data

Reported Type (n=201)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=31	n=6	n=6	n=12	E	133	66.2%**
15.4%	3.0%	3.0%	6.0%	I	68	33.8%**
SSR=1.13	SSR=0.23**	SSR=1.74	SSR=4.24**			
ISTP	ISFP	INFP	INTP	S	111	55.2%**
n=5	n=1	n=3	n=4	N	90	44.8%**
2.5%	0.5%	1.5%	2.0%	_	450	7. 40. 44
SSR=0.39*	SSR=0.08**	SSR=0.47	SSR=0.81	T	153	76.1%**
ESTP	ESFP	ENFP	ENTP	F	48	23.9%**
n=3	n=4	n=4	n=11		1//	00 (0/++
1.5%	2.0%	2.0%	5.5%	7	166	82.6%**
SSR=0.26*	SSR=0.23**	SSR=0.32*	SSR=1.99*	P	35	17.4%**
ESTJ	ESFJ	ENFJ	ENTJ			
n=47	n=14	n=10	n=40			
23.4%	7.0%	5.0%	19.9%			
SSR=2.25**	SSR=0.55*	SSR=1.81	SSR=6.77**			

Best-fit Type (n=201)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=24	n=9	n=6	n=9	E	128	63.7%**
11.9%	4.5%	3.0%	4.5%	1	73	36.3%**
SSR=0.87	SSR=0.35**	SSR=1.74	SSR=3.18**			
ISTP	ISFP	INFP	INTP	S	107	53.2%**
n=6	n=7	n=5	n=7	N	94	46.8%**
3.0%	3.5%	2.5%	3.5%			
SSR=0.46	SSR=0.57	SSR=0.78	SSR=1.42	T	132	65.7%**
ESTP	ESFP	ENFP	ENTP	F	69	34.3%**
n=6	n=5	n=18	n=14	1.	400	
3.0%	2.5%	9.0%	7.0%	J	133	66.2%*
SSR=0.51	SSR=0.29**	SSR=1.42	SSR=2.53**	P	68	33.8%*
ESTJ	ESFJ	ENFJ	ENTJ			
n=38	n=12	n=7	n=28			
18.9%	6.0%	3.5%	13.9%			
SSR=1.82**	SSR=0.47**	SSR=1.26	SSR=4.74**			

For both tables above: *Difference between Russian sample and UK general population significant at p < 0.05, based on chi-square results.

Looking at reported Type, the most frequent Type preference is ESTJ (23% of the total), followed by ENTJ (20%). Overall, the group tends to have a preference for Judging and Thinking, and to a lesser extent for Extraversion and Sensing.

^{**}Difference significant at p<0.01, based on chi-square results.

In terms of best-fit Type, ESTJ (19%) and ENTJ (14%) are also the most frequently occurring Type preferences. However, the proportions are lower than for reported Type. The general pattern is similar to that found with reported Type, with the group tending to have a preference for Extraversion, Sensing, Thinking and Judging. A notable difference, however, is that for all dimensions, the proportion of people with preferences for each pole are more evenly balanced than they are for reported Type.

It should be noted that the wider applicability of these Type distributions should not be overstated as the samples on which they are based cannot be considered to be representative of any wider group.

2010-2015 OPPassessment sample

Table 13.2: Type table for 2010-15 OPPassessment data

Reported Type (n=7,844)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=1838	n=159	n=102	n=636	E	4562	58.2%**
23.4%	2.0%	1.3%	8.1%	1	3282	41.8%**
SSR=1.71**	SSR=0.16**	SSR=0.76**	SSR=4.76**			
ISTP	ISFP	INFP	INTP	S	4914	62.6%**
n=217	n=31	n=81	n=218	N	2930	37.4%**
2.8%	0.4%	1.0%	2.8%	_		
SSR=0.44**	SSR=0.07**	SSR=0.31**	SSR=1.17*	T	6820	86.9%**
ESTP	ESFP	ENFP	ENTP	F	1024	13.1%**
n=185	n=41	n=142	n=316] ,	//10	04.207*
2.4%	0.5%	1.8%	4.0%	J	6613	84.3%*
SSR=0.41**	SSR=0.06**	SSR=0.13**	SSR=1.43**	P	1231	15.7%*
ESTJ	ESFJ	ENFJ	ENTJ			
n=2208	n=235	n=233	n=1202			
28.1%	3.0%	3.0%	15.3%			
SSR=2.70**	SSR=0.24**	SSR=1.07	SSR=5.28**			

The most common reported Type in this sample is, again, ESTJ (28% of the total), followed by ISTJ (23% of the total). Overall, the group has a greater preference for Thinking and Judging. Indeed, Types with the TJ combination are all over-represented compared to the UK general population, whilst Types with the FP combination are all significantly under-represented. To a lesser extent, Extraversion is more common than Introversion, and Sensing is more common than iNtuition.

It should be noted that the wider applicability of these Type distributions should not be overstated as the samples on which they are based cannot be considered to be representative of any wider group.

Internal consistency reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. Internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for both the Russian questionnaire development sample and the OPPassessment Step I reliability sample are shown in Table 13.3.

Table 13.3: Internal consistency reliability

Dimension	Coefficient alpha- questionnaire development data (n=201)	Coefficient alpha- OPPassessment data (n=7,695)
	(11-201)	
E-I	0.77	0.82
S-N	0.71	0.74
T–F	0.76	0.79
J_P	0.80	0.81

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. ²¹² On this basis, all of the dimensions of the questionnaire show good reliability.

²¹² For example, see Nunnally (1978) or Kline (2000).

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire.

The intercorrelations between dimensions amongst the OPPassessment 2010–15 sample are shown in Table 13.4. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores. ²¹³

	E-I	S-N	T-F	J-P
E-I		-0.16**	-0.12**	0.03*

Table 13.4: Intercorrelations between dimensions

The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving.

In addition, for this sample, E–I has been shown to correlate with the other three preference pairs, suggesting that a preference for Introversion is likely to be associated with preferences for Sensing, Thinking and Perceiving, whilst Extraversion is associated with iNtuition, Feeling and Judging. However, these correlations are fairly low, particularly the last, and may not be readily observable in reality.

S–N has also been shown to correlate reasonably highly with T–F, suggesting that a preference for Sensing is likely to be associated with a preference for Thinking, and that a preference for iNtuition is likely to be associated with a preference for Feeling. Similarly, J–P has been shown to correlate reasonably highly with T–F, suggesting that a preference for Judging is likely to be associated with a preference for

S-N
 0.23**
 0.34**

 T-F
 0.23**

 J-P
 0.23**

^{**}Significant at *p<0.05, **p<0.01.

²¹³ Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

Thinking, and that a preference for Perceiving is likely to be associated with a preference for Feeling.

At present, we do not have sufficient data to know whether these reflect a true relationship amongst the Russian general population or whether the findings are sample-specific. This will be explored once more data become available.

Validity: the accuracy of the Russian MBTI Step I instrument in predicting best-fit Type

The purpose of the MBTI instrument is to help individuals to establish their validated or 'best-fit' psychological Type. A key measure of the validity of the instrument is, therefore, how well the results relate to best-fit (validated) Type. These data are useful to practitioners in knowing how typically accurate the reported result is likely to be.

Best-fit data are available for a sample of people who took part in a research study to look at the relationship between MBTI reported Type and best-fit Type.

Table 13.5 presents the results of the analysis comparing best-fit with reported Type. The Russian questionnaire performs in a similar way to other language versions for which best-fit data are available, and there is good evidence for the accuracy of the instrument. In nearly 60% of cases, a respondent's reported Type will match their best-fit Type, and in nearly 85% of cases at least three of the four preferences will match.

Table 13.5: Match of reported and best-fit Type

	Russian questionnaire development sample (n=201)	
Agrees with all four letters	57.7%	
Agrees with three letters	26.9%	84.6%
Agrees with two letters	10.4%	
Agrees with one letter	4.5%	15.4%
Agrees with no letters	0.5%	

Dimension	Percentage agreement
E-I	89.6%
S-N	86.1%
T–F	79.6%
J–P	81.6%

Further analysis was carried out to investigate the validity and accuracy of the questionnaire. People who took the questionnaire were asked how confident they felt about their results on each Type dichotomy (on a scale from 1 to 5, where 5 indicated the highest degree of confidence). For every dimension, nearly three-quarters of the group were confident about their Type.

All these figures provide further support for the validity of the MBTI approach. Detailed results are shown in Table 13.6.

Table 13.6: Degree of confidence in results

Degree of	Percentage of group			
confidence	E-I	S-N	T-F	J-P
5 (highest)	46%	34%	36%	46%
4	26%	39%	38%	27%
3	16%	16%	14%	22%
2	7%	9%	11%	5%
1 (lowest)	4%	2%	2%	1%
Percentage at 4 or	72%	73%	74%	73%
above				

In summary, there is good evidence for the validity of the Russian MBTI Step I instrument. Specifically:

- There is a high level of agreement between best-fit and reported Type, comparable with results for other European language versions.
- Respondents are confident about their results.

Group differences in Type

Various types of demographic information were collected for the Russian OPPassessment 2010–15 sample. The relationship of MBTI Type to each of these factors is described below.

Gender

Most groups who take the MBTI questionnaire show a significant gender difference on the Thinking–Feeling dimension, and this is the case for the group in this study, as shown in Figure 13.9.²¹⁴ However, for this sample, there was a significant gender difference for all four preference pairs.

When compared with the preference pair distributions in the combined sample, Extraversion, iNtuition, Feeling and Perceiving preferences are over-represented amongst women and under-represented amongst men (although even amongst women in this group there are more people with a preference for Extraversion, Sensing, Thinking and Judging). It's worth noting that the differences for E–I, S–N and J–P are notably smaller than the gender difference for T–F.

Figure 13.7: Gender differences on the E–I dimension

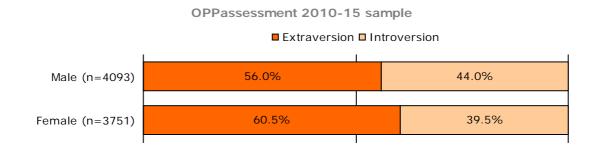
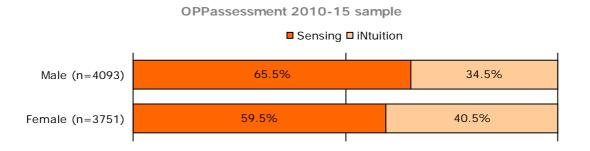



Figure 13.8: Gender differences on the S–N dimension

²¹⁴ For E-I, χ^2 =16.43; for S-N, χ^2 =30.34; for T-F, χ^2 =458.99; for J-P, χ^2 =12.26; all chi-squared tests significant at the p<0.01 level

Figure 13.9: Gender differences on the T–F dimension

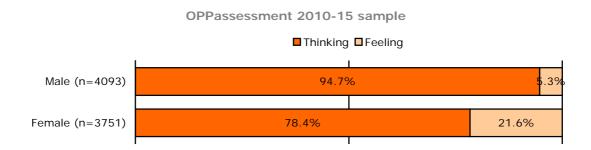
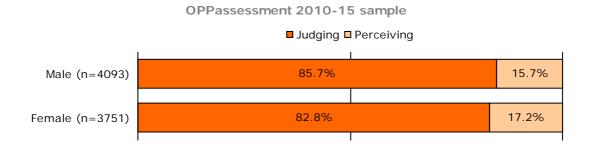



Figure 13.10: Gender differences on the J-P dimension

Age

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, for Sensing versus iNtuition, for Thinking versus Feeling, and for Judging versus Perceiving.

MBTI Step I European Data Supplement

On average, those with preferences for Introversion, Sensing, Thinking and/or Judging were older than those with preferences for Extraversion, iNtuition, Feeling and Perceiving. 215

For E-I: t(7835) = -7.25, p < 0.001; for S-N: t(7835) = 9.23, p < 0.001; for T-F: t(7835) = 3.36, p = 0.001, for J-P: t(7835) = 7.93, p < 0.001

Table 13.11: Significant mean age differences

	Extraversion	Introversion	Difference	Significance
Mean age (years)	36.64	34.87	1.21	**

	Sensing	iNtuition	Difference	Significance
Mean age (years)	34.74	33.17	1.57	**

	Thinking	Feeling	Difference	Significance
Mean age (years)	34.26	33.43	0.83	**

	Judging	Perceiving	Difference	Significance
Mean age (years)	34.43	32.64	1.80	**

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.

Occupational level

Previous research in other countries has demonstrated that individuals in higher level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower level jobs (Quenk, Hammer and Majors, 2004).

When these two groups were compared, significant differences were found for all four dimensions, as shown below. The results suggest an interesting pattern of results. In general, there is a trend towards Extraversion, Sensing, Thinking and Judging the higher the occupational level. However there are exceptions to this pattern, particularly found with the top two organisational levels. For example, individuals at the top level are more likely to report a preference for iNtuition, Feeling and Perceiving than senior executives. The pattern

for Extraversion–Introversion is a little different, showing a similar distribution of preferences in most levels except employee level, where a person is more likely to report a preference for Introversion as compared to the other levels.

The graphs below show the pattern of results found for each preference pair.

Figure 13.12: Extraversion-Introversion and occupational level

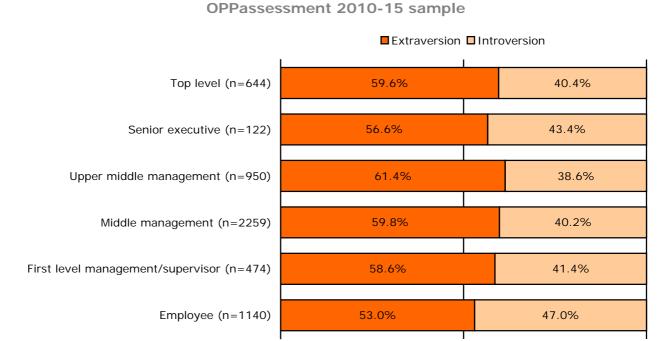


Figure 13.13: Sensing-iNtuition and occupational level

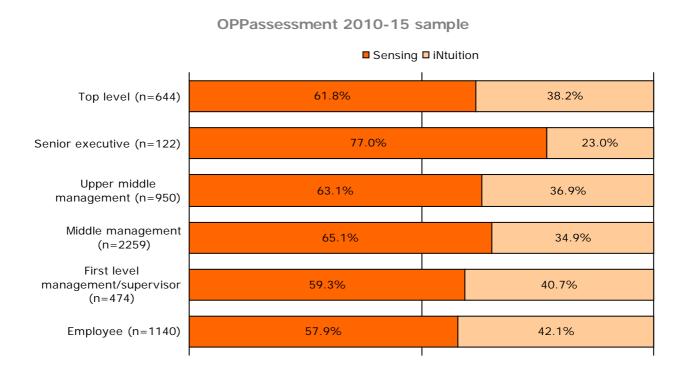


Figure 13.14: Thinking-Feeling and occupational level

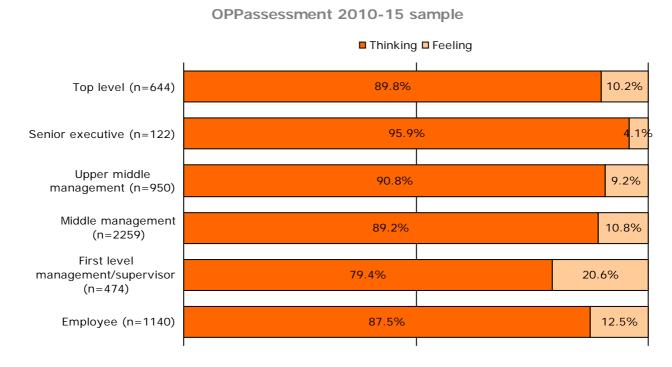
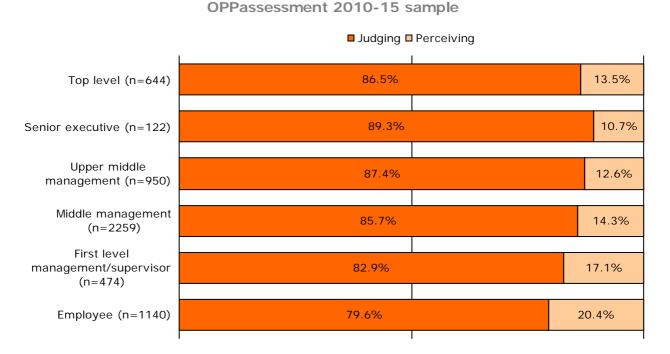



Figure 13.15: Judging-Perceiving and occupational level

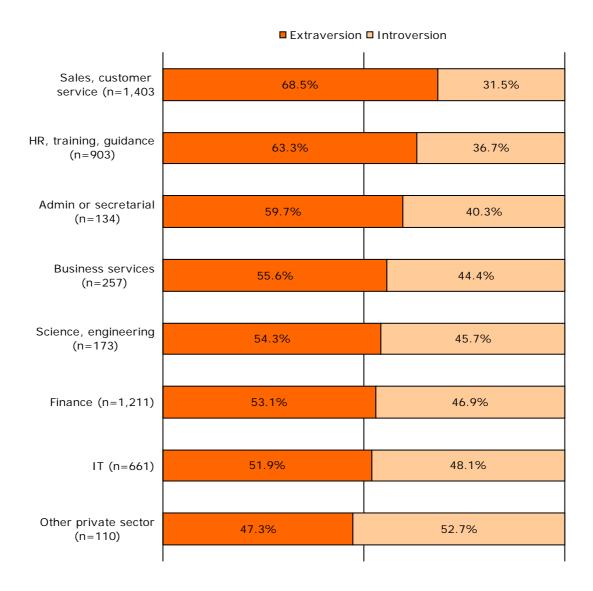
Education

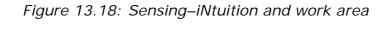
Specific educational qualifications were not available for the sample; however, the age at which individuals left full-time education was available. There were found to be links between the T–F and J–P dimensions and the age at which individuals left full-time education. On average, those with a preference for Thinking left full-time education at a later age than those with a preference for Feeling. Those with a preference for Judging left full-time education at a later age than those with a preference for Perceiving.

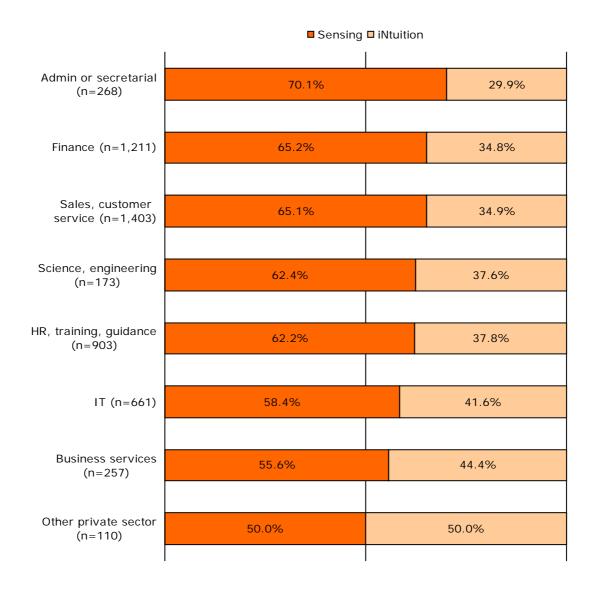
These differences are statistically significant. However, it is worth noting that the difference is less than half a year in real terms. It is possible that these differences are linked to the work area of those with different preferences (see section below). Those with a Thinking preference are more likely to stay in full-time education for longer and work in areas such as science, engineering, sales, IT and finance. Those with a Judging preference are more likely to stay in education for longer and work in areas such as administration, science, engineering, sales and finance. Such work areas are likely to require further education than other work areas

Figure 13.16: Differences in age left full-time education

	Thinking	Feeling	Difference	Significance
Mean age left full- time education (years)	22.44	22.21	0.23	**


	Judging	Perceiving	Difference	Significance
Mean age left full- time education (years)	22.45	22.22	0.23	**


Work area


Previous research into MBTI Type suggests that an individual's Type influences their choice of career (Hammer, 1998), and indeed the data in this supplement show that there is a statistically significant relationship between all four dimensions and work area. ²¹⁶ In the figures that follow, categories have been re-ordered according to the percentage of people with E, S, T or J preferences (work areas with fewer than 100 respondents have been omitted as have undefined work areas described as 'Other').

²¹⁶ For E-I: χ^2 =99.49; for S-N: χ^2 =28.26; for T-F: χ^2 =70.05; for J-P: χ^2 =37.80; all significant at the p<0.001 level.

Figure 13.17: Extraversion-Introversion and work area



13.19: Thinking-Feeling and work area

Country of residence

Only a limited number of people chose their nationality, but 99% of the sample disclosed their country of residence. Of these, 83% were from the Russian Federation, 10% were from Ukraine and 3% were from Kazakhstan. No other nationality was represented in sufficiently large numbers to be included in the analysis.

There was a statistically significant relationship between country of origin and one of the preference pairs: Sensing–iNtuition. The Sensing preference was over-represented in those living in Kazakhstan, compared to the whole sample. However, for Ukraine and Russian Federation, the proportion of people with Sensing and iNtuition preferences was similar to the whole sample. ²¹⁷

Sensing □ iNtuition

Kazakhstan
(n=191)

Ukraine (n=738)

Russian Federation
(n=6,452)

□ Sensing □ iNtuition

36.2%

36.0%

37.3%

Figure 13.21: Sensing-iNtuition and country of residence

Employment status

Employment status (ie whether a person works full-time, part-time, is self-employed, etc) was disclosed by 84% of the sample. Of these, 98% were working full-time. No other employment status was represented in sufficiently large numbers for an analysis of Type differences by employment status to be conducted.

326

 $^{^{217}}$ χ^2 =10.02, significant at the p<0.01level.

Appendix 1: Sample description

Sample 1: Questionnaire development sample

This sample consists of 201 individuals who completed the MBTI Step I questionnaire in Russian via the OPPassessment system between January 2007 and November 2009. Of these individuals, 63% were female and 37% were male. Age ranged from 20 to 69 years, with a mean and median of 33.

Nationality was disclosed by 90% of respondents. Of these, 92% were Russian. No other individual nationality was represented in large numbers.

Nationality	Percentage
Russian	91.6%
Other	8.4%

The majority of those who disclosed their employment status were in full-time employment:

Employment status	Percentage
Full-time	78.6%
Part-time	1.5%
Self-employed	0.5%
Retired	0.5%
Homemaker	0.5%
Unemployed	0.0%
Not disclosed	18.4%

Of those who disclosed their occupational level, many were of managerial level or above, although the largest single group was employee level (24.4%):

Occupational level	Percentage		
Top level	9.5%		
Senior executive	2.5%		
Upper middle management	11.9%		
Middle management	13.4%		
First-level	7.5%		
management/supervisor			
Employee	24.4%		
Other	6.5%		
Not disclosed	24.4%		

A range of work areas were represented:

Work area (job type)	Percentage		
Sales, customer service	13.9%		
Finance	11.9%		
HR, training, guidance	9.0%		
Admin or secretarial	9.0%		
Science, engineering	8.0%		
Health, social services, etc	6.5%		
IT	3.0%		
Research and development	2.5%		
Business services	2.5%		
Leisure, personal service	2.0%		
Education	1.0%		
Other public sector	1.0%		
Other private sector	0.5%		
Military, police, prison, fire	0.0%		
Skilled operative	0.0%		
Land, sea or air transport	0.0%		
Unskilled operative	0.0%		
Other	8.5%		
Not disclosed	20.9%		

Sample 2: OPPassessment 2010-15 sample

This sample consists of 7,844 individuals who completed the MBTI Step I questionnaire in Russian via the OPPassessment system between the 1st January 2010 and the 15th September 2015.

The data were downloaded on 16th September 2015 and therefore comprises individuals for whom MBTI reports were generated by 16th September 2015.

Of these individuals, 48% were female and 52% were male. Age ranged from 14 to 80 years, with a mean and median of 33.

Nationality was only disclosed by a limited number of people. However, country of residence was disclosed by 99% of respondents. Of these, 93% listed Russian Federation and 10% listed Ukraine.

Country of residence	Percentage
Russian Federation	82.9%
Ukraine	9.5%
Other	7.6%

The majority of those who disclosed their employment status were in full-time employment:

Employment status	Percentage
Full-time	81.5%
Part-time	0.8%
Unemployed	0.6%
Self-employed	0.5%
Retired	0.0%
Homemaker	0.0%
Not disclosed	16.5%

Of those who disclosed their occupational level, many were of managerial level or above, although the largest single group was middle management (28.8%):

Occupational level	Percentage
Top level	8.2%
Senior executive	1.6%
Upper middle management	12.1%
Middle management	28.8%
First-level	6.0%
management/supervisor	
Employee	14.5%
Other	7.1%
Not disclosed	21.6%

Sample 3: OPPassessment Step I reliability sample

This sample consists of 7,695 individuals who completed the MBTI Step I questionnaire in Russian via the OPPassessment system between the 1st January 2010 and the 15th September 2015. The data was used to calculate the internal consistency reliability for the MBTI Step I questionnaire.

The data were downloaded on 7th April 2016 and therefore comprises individuals for whom MBTI reports were generated by 7th April 2016.

Of these individuals, 50% were female and 50% were male. Age ranged from 14 to 64 years, with a mean and median of 34.

Of those who disclosed their country of residence, 80.6% were from Russia, 10.5% from Ukraine, 2.4% from Kazakhstan and 6.5% from elsewhere.

Country of residence	Percentage
Russia	80.6%
Ukraine	10.5%
Kazakhstan	2.4%
Other	6.5%

MBTI Step I European Data Supplement

The majority of those who disclosed their employment status were in full-time employment:

Employment status	Percentage
Full-time	75.2%
Part-time	0.7%
Unemployed	0.6%
Self-employed	0.5%
Not disclosed	23.0%

Of those who disclosed their occupational level, many were of managerial level or above, although the largest single group was middle management (25.1%):

Occupational level	Percentage		
Senior executive	9.2%		
Upper middle management	10.9%		
Middle management	25.1%		
First-level	5.6%		
management/supervisor			
Employee	14.3%		
Other	6.8%		
Not disclosed	28.1%		

MBTI[®] Step I[™] instrument

European Data Supplement

Spanish

January 2009

MBTI Step I European Data Supplement

Contents

Introduction	. 333
Type distribution	. 334
OPPassessment data (representative Spanish-speaking profession	onal
and managerial sample)	. 335
Management development programme participants	
Internal consistency reliability	
Intercorrelations between MBTI dimensions	
Validity: the accuracy of the Spanish MBTI Step I instrument in	
predicting best-fit Type	. 339
Group differences in Type	
Gender	
Age	. 340
Occupational level	
Education	
Work area	. 341
Nationality	. 342
Employment status	
Appendix 1: Sample description	
Sample 1: Data from OPPassessment (representative Spanish-	
speaking professional and managerial sample)	. 343
Sample 2: Management development programme participants	

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

[©] Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

[®] MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 $^{^{\}text{TM}}$ Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

 $[\]circledast$ OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. TM OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Introduction

Data collected from the Spanish version of the MBTI Step I questionnaire were analysed to produce the findings in this supplement. Brief descriptions of the two samples are given below, with further details provided in Appendix 1.

- A group of 1,527 individuals who completed the MBTI Step I questionnaire in Spanish via the OPPassessment system between 2004 and mid-2008.²¹⁸ This sample is considered to be representative of the groups of people with whom the Spanish MBTI instrument has been and will be used for applications such as management development, coaching, counselling and teambuilding. As such, it is likely to represent a cross-section of the Spanish-speaking professional and managerial population.
- A group of 128 Spanish participants on management development programmes at Ashridge Business School, run between 2000 and 2003.²¹⁹

The results of the analyses are outlined below.

²¹⁸ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via email and/or completed online.

email and/or completed online.
²¹⁹ Data reproduced with kind permission from Ashridge Business School.

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. Opposite are Type tables for the Spanish samples described on the previous page.

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group. An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is underrepresented. Asterisks are used to denote whether the over- or underrepresentations are statistically significant, based on the results of chisquare analysis. ²²⁰

Ideally, the Type distribution from a large representative sample of the Spanish population would be used to calculate SSRs in this data supplement. However, such a sample does not currently exist. In its place, SSRs have been calculated using Type data from the UK general population (Kendall, 1998), which can be justified by the fact that Type distributions for comparable Spanish and British groups, such as managers and professionals, are similar. Evidence (eg Hackston and Kendall, 2004; Quenk et al., 2004; Kirby, Kendall and Barger, 2007) does suggest that although Type-related behaviours vary a good deal from country to country and from culture to culture, the frequencies of underlying MBTI Types do not.

 $^{^{220}}$ Chi-square analysis (often abbreviated to $\chi^2)$ is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the UK general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each Type within a particular sample differs significantly from the proportion of people reporting the same Type within the reference group.

OPPassessment data (representative Spanish-speaking professional and managerial sample)

Table 14.1: Type table for OPPassessment Data (reported Type, n=1,527)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=185 12.1% SSR=0.88	n=15 1.0% SSR=0.08**	n=8 0.5% SSR=0.31**	n=69 4.5% SSR=3.21**	E	1,160 367	76.0%** 24.0%**
n=37	ISFP n=3	INFP n=7	INTP n=43	S N	947 580	62.0%** 38.0%**
2.4% SSR=0.38** ESTP	0.2% SSR=0.03** ESFP	0.5% SSR=0.14** ENFP	2.8% SSR=1.15 ENTP	T F	1,409 118	92.3%** 7.7%**
n=100 6.5% SSR=1.13	n=13 0.9% SSR=0.10**	n=21 1.4% SSR=0.22**	n=139 9.1% SSR=3.31**	J P	1,164 363	76.2%** 23.8%**
ESTJ n=565	ESFJ n=29	ENFJ n=22	ENTJ n=271	-		
37.0% SSR=3.56**	1.9% SSR=0.15**	1.4% SSR=0.52*	17.7% SSR=6.04**			

^{*}Difference significant at p<0.05, based on chi-square results.

The most common single Type preference is ESTJ (37% of the total), followed by ENTJ (18%); this is a common finding with managerial groups in other countries. The SSR results suggest that, in comparison with the UK general population, those with preferences for NT are over-represented (with the exception of INTP), and those with preferences for F are under-represented. Again, this is a common finding with managerial groups, although it is often more specifically the SF preference that tends to be under-represented.

^{**}Difference significant at p<0.01, based on chi-square results.

Management development programme participants

Table 14.2: Type table for management development programme participants (reported Type, n=128)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=21	n=1	n=1	n=6	E	86	67.2%**
16.4%	0.8%	0.8%	4.7%	1	42	32.8%**
SSR=1.20	SSR=0.06**	SSR=0.46	SSR=3.33**			
ISTP	ISFP	INFP	INTP	S	81	63.3%**
n=8	n=1	n=1	n=3	N	47	36.7%**
6.3%	0.8%	0.8%	2.3%	_	110	02 00/ ++
SSR=0.97	SSR=0.13*	SSR=0.25	SSR=0.96	T	119	93.0%**
ESTP	ESFP	ENFP	ENTP	F	9	7.0%**
n=10	n=0	n=1	n=15		89	69.5%*
7.8%	0.0%	0.8%	11.7%	J		
SSR=1.34	SSR=0.00**	SSR=0.12*	SSR=4.26**	P	39	30.5%*
ESTJ	ESFJ	ENFJ	ENTJ			
n=39	n=1	n=3	n=17			
30.5%	0.8%	2.3%	13.3%			
SSR=2.93**	SSR=0.06**	SSR=0.85	SSR=4.52**			

^{*}Difference significant at p<0.05, based on chi-square results.

The Type distribution is similar to that for the OPPassessment sample described earlier, with ESTJ (31% of the total) being the most common single Type preference, and NT being over-represented (with the exception of INTP) and SF being under-represented.

^{**}Difference significant at p<0.01, based on chi-square results.

Internal consistency reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. Internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for the Spanish OPPassessment sample are shown in Table 14.3.

Table 14.3: Internal consistency reliability

Dimension	Coefficient	
	alpha	
E-I	0.83	
S-N	0.79	
T–F	0.73	
J_P	0.79	

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. 221 On this basis, all of the dimensions of the questionnaire show good reliability. In addition, the alpha coefficients have been found to be consistent across different age groups and across males and females.

337

²²¹ For example, see Nunnally (1978) or Kline (2000).

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire.

The intercorrelations between dimensions amongst the OPPassessment sample are shown in Table 11.4. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores. ²²²

Table 14.4: Intercorrelations between dimensions

	E-I	S-N	T-F	J-P
E-I		-0.06*	-0.07**	-0.01
S-N			0.17**	0.40**
T-F				0.19**
J-P				

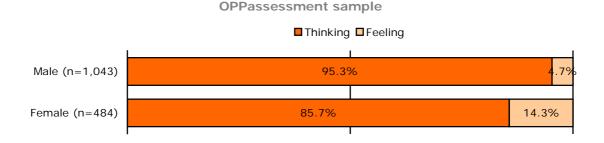
Significant at: *p<0.05, **p<0.01.

Although statistically significant, only very low correlations were found between most of the dimensions. The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving.

²²² Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

Validity: the accuracy of the Spanish MBTI Step I instrument in predicting best-fit Type

At present, insufficient data have been collected for the Spanish language version to be able to report any best-fit validity results.

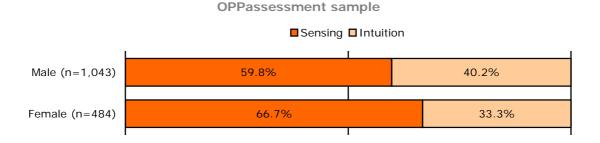

Group differences in Type

Various types of demographic information were collected for the OPPassessment sample. The relationship of MBTI Type to each of these factors is described below.

Gender

Most groups who take the MBTI questionnaire show a significant gender difference on the Thinking–Feeling dimension, and this is the case for the group in this study, as shown in Figure 14.1.²²³

Figure 14.1: Gender differences on the T-F dimension



Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women (although even amongst women in this group there are considerably more individuals with a preference for Thinking than for Feeling). This effect has been found many times with many different versions of the instrument in a number of different cultures.

For this group, there were also significant gender differences on the Sensing–iNtuition dimension, as shown in Figure 11.2. ²²⁴ Sensing preferences are over-represented amongst women and iNtuition preferences are over-represented amongst men.

 $^{^{223}}$ $\chi^2{=}42.36;$ significant at p<0.001. 224 $\chi^2{=}6.70;$ significant at p<0.01.

Figure 14.2: Gender differences on the S–N dimension

Age

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, Sensing versus iNtuition, Thinking versus Feeling and Judging versus Perceiving. The OPPassessment sample showed a statistically significant relationship between age and two of the dimensions, ²²⁵ as shown in Table 14.5. The mean age of people with a preference for Introversion and/or Judging was between one and one and a half years higher than of those with a preference for Extraversion and/or Perceiving.

Table 14.5: Significant mean age differences

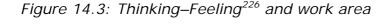
	Extraversion	Introversion	Difference	Significance
Mean age	36.61	37.99	1.38	**
(years)				

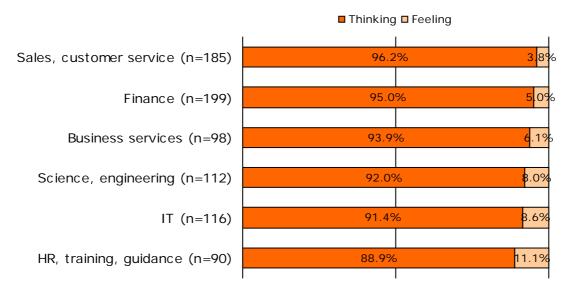
	Judging	Perceiving	Difference	Significance
Mean age	37.23	36.02	1.21	*
(years)				

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.

²²⁵ Independent-samples t-test; EI significant at p<0.01, JP significant at p<0.05.

Occupational level


Previous research in other countries has demonstrated that individuals in higher level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower level jobs (Quenk, Hammer and Majors, 2004). However, this was not found to be the case amongst the Spanish OPPassessment sample. There were no significant differences between occupational levels on any of the dimensions.


Education

Specific educational qualifications were not available for the OPPassessment sample; however, the age at which individuals left full-time education was. There was found to be no link between any of the dimensions and the age at which individuals left full-time education.

Work area

Previous research into MBTI Type suggests that an individual's Type influences their choice of career (Hammer, 1998). For this sample, there is a statistically significant relationship between only the Thinking–Feeling dimension and work area. In the figure below, categories have been re-ordered according to the percentage of Thinking Types, and work areas with fewer than 90 respondents have been omitted (as well as undefined work areas such as 'Other').

 $^{^{226} \}chi^2 = 31.56$; significant at p<0.05.

Nationality

Information on nationality was available for the OPPassessment group. Seventy-nine per cent of the group were Spanish, and 16% described their nationality as 'Other'. The remaining 5% were split amongst various European nationalities. However, no other nationality was represented in sufficiently large numbers for an analysis of Type differences by nationality to be conducted.

Employment status

Employment status has often been found to show a relationship with MBTI dimensions in other language versions. However, amongst the Spanish-speaking sample, 97% of the group reported that they worked full-time. There were insufficient numbers of people who worked part-time or were self-employed for any group-level analyses to be conducted. Once additional data become available it will be possible to conduct this analysis.

Appendix 1: Sample description

Sample 1: Data from OPPassessment (representative Spanishspeaking professional and managerial sample)

This sample consists of 1,527 individuals who completed the MBTI Step I instrument in Spanish via the OPPassessment system between 2004 and mid-2008. Sixty-eight per cent of the respondents were male and 32% were female. Age ranged from 19 to 69 years, with a mean of 37 and a median of 36.

Nationality was disclosed by 85% of respondents. Of these, 79% were Spanish. No other individual nationality was represented in large numbers.

Nationality	Percentage
Spanish	79.4%
Other	20.6%

The majority of the group were in full-time employment:

Employment status	Percentage	
Full-time	97.0%	
Part-time	1.7%	
Self-employed	0.9%	
Unemployed	0.3%	
Retired	0.2%	

Many of the group were of managerial level or above, but with the largest single group being employee (21.6%):

Occupational level	Percentage
Top level	4.7%
Senior executive	14.0%
Upper middle management	17.8%
Middle management	17.7%
First level	17.5%
management/supervisor	
Employee	21.6%
Other	6.9%

A range of work areas were represented:

Work area (job type)	Percentage
Finance	18.3%
Sales, customer service	16.9%
IT	10.6%
Science, engineering	10.3%
Business services	9.0%
HR, training, guidance	8.3%
Research and development	3.8%
Admin or secretarial	3.7%
Health, social services, etc.	1.5%
Skilled operative	0.6%
Land, sea or air transport	0.6%
Leisure, personal service	0.6%
Unskilled operative	0.3%
Education	0.2%
Military, police, prison, fire	0.1%
Other private sector	5.1%
Other public sector	0.1%
Other	10.3%

Sample 2: Management development programme participants

• This sample consisted of 128 Dutch participants on management development programmes at Ashridge Business School, run between 2000 and 2003. Seventy-eight per cent of the group were male and 22% female. Age ranged from 23 to 58 years.

MBTI[®] Step I[™] instrument

European Data Supplement

Swedish

January 2009

MBTI Step I European Data Supplement

Contents

Introduction	. 346
Type distribution	. 348
Swedish general population sample	. 349
OPPassessment data (representative Swedish-speaking profession	onal
and managerial sample)	
Management development programme participants	. 351
Reliability	. 352
Intercorrelations between MBTI dimensions	. 354
Validity: the accuracy of the Swedish MBTI Step I instrument in	
predicting best-fit Type	. 355
Construct validity	. 356
Comfort with different organisational cultures	. 356
Comfort with different types of job	
Correlations with other instruments	
Group differences in Type	. 366
Gender	. 366
Age	. 366
Occupational level	
Education	. 370
Work area	. 370
Nationality	. 371
Employment status	. 371
Appendix 1: Sample descriptions	. 373
Sample 1: Swedish general population sample	. 373
Sample 2: Data from OPPassessment (representative Swedish-	
speaking professional and managerial sample)	. 374
Sample 3: Management development programme participants	. 375
Sample 4: Swedish psychology students – best-fit study	. 375
Sample 5: Delegates on Swedish MBTI qualifying training course	es:
	.375

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner.

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

[©] Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

[®] MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

[™] Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.

[®] OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. ™ OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Introduction

Data from five different samples were analysed to produce the findings in this chapter. A brief description of each sample is given below. Further details of the samples are provided in Appendix 1.

- A group of 914 individuals considered to be broadly representative of the Swedish general population. The group comprised 349 research study participants and 565 individuals who responded to a random sampling of the Swedish general population during 2002.
- A sample of 1,817 individuals who completed the MBTI Step I questionnaire in Swedish via the OPPassessment system between 2004 and mid-2008.²²⁷ This sample is considered to be representative of the groups of people with whom the Swedish MBTI instrument has been and will be used for applications such as management development, coaching, counselling and teambuilding. As such, it is likely to represent a cross-section of the Swedish-speaking professional and managerial population.
- A group of 228 Swedish participants on management development programmes at Ashridge Business School, run between 2000 and 2003.
- A group of 50 psychology students at Stockholm University who participated in a test-retest study during 2002.
- A sample of 70 MBTI training course delegates who undertook training during 2002.

The results of the analyses are outlined below. 228

 $^{^{227}}$ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via email and/or completed online.

²²⁸ The collection and analysis of the OPPassessment data was conducted by OPP. All other data collection and analyses were conducted by either Ashridge Business School or Psykologiförlaget. This chapter includes data taken from the *MBTI Step I Swedish Version Manual Supplement* (2003) published by Psykologiförlaget and the Ashridge Management School MBTI research into distribution of Type (2003). The content is reproduced with kind permission.

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. Below are Type tables for three of the samples described on the previous page: the general population sample, the professional and managerial group taken from OPPassessment, and the Ashridge management development programme participants.

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group.

The merged data set consisting of the 565 individuals who responded to a random sampling of the Swedish general population and the 349 research study participants who completed the questionnaire is used as the reference group when calculating the SSRs in this chapter. This is the closest match we have at present to a Type distribution from a large representative sample of the Swedish population. This combined group will be referred to as the Swedish general population sample hereafter.

An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is under-represented. Asterisks are used to denote whether the over- or under-representations are statistically significant, based on the results of chi-square analysis. ²²⁹

348

 $^{^{229}}$ Chi-square analysis (often abbreviated to $\chi^2)$ is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the Swedish general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each Type within a particular sample differs significantly from the proportion of people reporting the same Type within the reference group.

Swedish general population sample

Table 15.1: Type table for Swedish general population data²³⁰ (reported Type, n=914)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=104	n=61	n=22	n=10	E	573	62.7%
11.4%	6.7%	2.4%	1.1%	1	341	37.3%
				S	576	63.0%
ISTP	ISFP	INFP	INTP	_ N	338	37.0%
n=50	n=28	n=37	n=29		330	37.070
5.5%	3.1%	4.0%	3.2%	Т	441	48.2%
				_ F	473	51.8%
ESTP	ESFP	ENFP	ENTP			
n=41	n=53	n=107	n=54	J	515	56.3%
4.5%	5.8%	11.7%	5.9%	P	399	43.7%
ESTJ	ESFJ	ENFJ	ENTJ	\dashv		
n=129	n=110	n=55	n=24			
14.1%	12.0%	6.0%	2.6%			

The most common single Type preference is ESTJ (14% of the total), closely followed by ESFJ (12%) and ENFP (12%). The least frequently occurring Type is INTJ (1%), followed by INFJ (2%), ENTJ, ISFP and INTP (all 3%).

²³⁰ Note that no SSRs are shown in this table because the table contains the reference group itself.

OPPassessment data (representative Swedish-speaking professional and managerial sample)

Table 15.2: Type table for OPPassessment data (reported Type, n=1,817)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=149	n=44	n=15	n=39	E	1,395	76.8%**
8.2%	2.4%	0.8%	2.1%	1	422	23.2%**
SSR=0.72**	SSR=0.36**	SSR=0.34**	SSR=1.96			
				S	1,065	58.6%*
ISTP	ISFP	INFP	INTP	N	752	41.4%*
n=69	n=28	n=34	n=44			
3.8%	1.5%	1.9%	2.4%	Т	1,197	65.9%**
SSR=0.69*	SSR=0.50**	SSR=0.46**	SSR=0.76	F	620	34.1%**
ESTP	ESFP	ENFP	ENTP] '	020	011170
n=133	n=63	n=142	n=189	J	1,115	61.4%*
7.3%	3.5%	7.8%	10.4%	P	702	38.6%*
SSR=1.63**	SSR=0.60**	SSR=0.67**	SSR=1.76**	<u> </u>		
ESTJ	ESFJ	ENFJ	ENTJ			
n=397	n=182	n=112	n=177			
21.8%	10.0%	6.2%	9.7%			
SSR=1.55**	SSR=0.83	SSR=1.02	SSR=3.71**			

^{*}Difference significant at p<0.05, based on chi-square results.

The most common single Type preference is ESTJ (22% of the total); this is a common finding with managerial groups in other countries. The SSR results suggest that, in comparison with the Swedish general population, those with preferences for SF are under-represented. Again, this is a common finding with managerial groups in other countries. This often corresponds with an over representation of people with preferences for NT. However, whilst ENTJ, ENTP and (to some extent) INTJ are over-represented, the proportion of people with a preference for INTP is similar to the Swedish general population group. This may be the result of a general tendency towards Extraversion amongst the managerial group.

^{**}Difference significant at p<0.01, based on chi-square results.

Management development programme participants

Table 15.3: Type table for management development course participants (reported Type, n=228)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=22	n=5	n=3	n=6	E	172	75.4%**
9.6%	2.2%	1.3%	2.6%	1	56	24.6%**
SSR=0.85	SSR=0.33**	SSR=0.55	SSR=2.41			
ISTP	ISFP	INFP	INTP	S	130	57.0%
n=9	n=2	n=2	n=7	N	98	43.0%
3.9%	0.9%	0.9%	3.1%	_	105	01 10/ ++
SSR=0.72	SSR=0.29	SSR=0.22*	SSR=0.97	T F	185 43	81.1%** 18.9%**
ESTP	ESFP	ENFP	ENTP	· [43	10.970
n=27	n=4	n=11	n=26	J	140	61.4%
11.8%	1.8%	11%	11.4%	P	88	38.6%
SSR=2.64**	SSR=0.30*	SSR=0.41**	SSR=1.93**			
ESTJ	ESFJ	ENFJ	ENTJ			
n=52	n=9	n=7	n=36			
22.8%	3.9%	3.1%	15.8%			
SSR=1.62**	SSR=0.33**	SSR=0.51	SSR=6.01**			

^{*}Difference significant at p<0.05, based on chi-square results.

The Type distribution is similar to the OPPassessment sample described above, with ESTJ (23% of the total) being the most common single Type preference, and NT (with the exception of INTP) being over-represented and SF being under-represented. The main difference between the two distributions is a higher proportion of people with a preference for Thinking amongst this group. This is likely to be at least partly a gender effect, as this sample contains a higher proportion of males (79%) than does the OPPassessment group (53%).

^{**}Difference significant at p<0.01, based on chi-square results.

Reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. Internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for the Swedish general population and OPPassessment samples are shown in Figure 15.4.

Dimension	Coefficient alpha		
	General population OPPassessment		
E-I	0.86	0.82	
S-N	0.80	0.72	
T–F	0.78	0.76	
J_P	0.84	0.79	

Table 15.4: Internal consistency reliability

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. On this basis, all the dimensions of the questionnaire show good internal consistency reliability in the two groups. In addition, the alpha coefficients have been found to be consistent across different age groups and both genders.

Test—retest reliability is another form of reliability, and is concerned with the consistency of results on the same instrument over time. It is calculated by correlating the results from the first time an instrument is taken with those of a subsequent administration after a suitable period of time has elapsed. The strength of these correlations is a measure of how consistent the instrument is over time. The test—retest correlations obtained with a three-month interval between administrations are shown in Figure 15.5, based on the Stockholm University sample of 50 psychology students. The table also shows the proportion of people who had the same preference on both testing occasions for each dimension, and the proportion of people for whom four, three and two preferences remained the same on both occasions. None of the participants has fewer than two of their preferences remaining the same. These figures are all very satisfactory.

2

²³¹ For example, see Nunnally (1978) or Kline (2000).

Table 15.5: Test-retest reliability

Dimension	Correlation		
E-I	0.92		
S-N	0.80		
T–F	0.81		
J_P	0.80		

Dimension	Percentage reporting
	the same preference
E-I	92%
S-N	82%
T–F	90%
J_P	78%

All four preferences remaining the same	52%	90%
Three preferences remaining the same	38%	
Two preferences remaining the same	10%	10%
Fewer than two preferences remaining the same	0%	

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire.

The intercorrelations between dimensions amongst the OPPassessment sample are shown in Figure 15.6. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores. ²³²

Table 15.6: Intercorrelations between dimensions

	E-I	S-N	T-F	J–P
E-I		-0.18**	-0.13**	-0.01
S-N			0.15**	0.40**
T-F				0.14**
J-P				

^{**}Significant at p<0.01.

Although statistically significant, only very low correlations were found between most of the dimensions. The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving.

²³² Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

Validity: the accuracy of the Swedish MBTI Step I instrument in predicting best-fit Type

The purpose of the MBTI instrument is to help individuals to establish their validated or 'best-fit' psychological Type. A key measure of the validity of the instrument is, therefore, how well the results relate to best-fit (validated) Type. These data are useful to practitioners in knowing how typically accurate the reported result is likely to be.

Best-fit data are available for one of the samples. The MBTI qualifying workshop delegates established their best-fit Type as part of their training course, and this was collected for the group.

Figure 15.6 presents the results of the analysis comparing reported with best-fit Type. The Swedish MBTI Step I questionnaire performs in a very similar way to other European language versions, and there is very good evidence for the accuracy of the instrument. In 59% of cases, a respondent's reported Type will match their best-fit Type, and in 93% of cases at least three of the four preferences will match.

Table 15.7: Match of reported and best-fit Type

	MBTI qualifying training course delegates (n=70)		
Agrees with all four letters	59%	93%	
Agrees with three letters	34%	93%	
Agrees with two letters	7%		
Agrees with one letter	0%	7%	
Agrees with no letters	0%		

T			
	Percentage agreement		
Dimension	Training delegates		
E-I	94%		
S-N	79%		
T–F	90%		
J_P	88%		

Further analysis was carried out to investigate the validity and accuracy of the questionnaire. MBTI qualifying training course delegates were asked how confident they felt about each of their best-fit preferences (on a scale of 1 to 5, where 5 indicated the highest degree of confidence). For every dimension, over two-thirds of the group reported a rating of either 4 or 5, showing that they were confident about their Type (E–I 80%, J–P 71%, T–F 70%, S–N 69%). This provides further support for the validity of the MBTI approach.

Construct validity

Construct validity is concerned with whether an instrument successfully measures a particular psychological construct. If it can be demonstrated that an instrument does do this, then the instrument can be said to have construct validity.

Construct validity can be measured in two ways. The first method is to correlate individuals' scores on the instrument with the behaviours they would be expected to show if they possessed the relevant psychological construct. The second method is to correlate scores on the instrument with those on another instrument which is already in existence and for which we already know what the scores measure.

In accordance with the first method, the Swedish general population sample were asked to respond to a number of questions about their views on work and organisational issues, as well as to complete the MBTI Step I questionnaire.

Comfort with different organisational cultures

The respondents were initially asked to record on a five-point scale their degree of comfort with different types of organisations, where 1 represented 'Very uncomfortable' and 5 'Very comfortable'. Prior to analysing the data, MBTI experts made predictions about the relationships between the MBTI dimensions and the responses to the questions. Once the predictions had been made, the data were analysed to explore the relationships between reported MBTI preferences and comfort with different organisational cultures. The questions, predictions and results are shown in Figure 15.8. Asterisks in the significance column indicate significant relationships, based on the results of one-way analysis of variance. Where there are no asterisks, this signifies that the data did not support the prediction.

Table 15.8: Comfort expressed by different Types with different organisational cultures

Organisational characteristic	Pre	Prediction	
	More	Less	1
	comfort	comfort	
An organisation with a clear structure where it is	S	N	*
always apparent who is responsible for what	J	Р	***
	SJ	Non-SJ	***
An organisation where the independence of the	NP	Non-NP	***
employees is stressed	INTP	Non-INTP	
An organisation which stresses employee loyalty	ISTJ	Non-ISTJ	
and offers 'lifelong employment'	ISFJ	Non-ISFJ	
An organisation where everything is done	S	N	***
according to the book	J	Р	***
	SJ	Non-SJ	***
An organisation with thousands of employees,	N	S	*
perhaps with activities in several countries	Р	J	
An organisation where every job has been	ST	Non-ST	
rationalised/simplified as much as possible			
An organisation where the employees have	NF	Non-NF	***
different backgrounds			
An organisation where an employee can be	EN	Non-EN	
responsible for many different areas			
An organisation where everyone is expected to	SJ	Non-SJ	***
'fit into the established pattern'			
An organisation where there are considerable	SP	Non-SP	***
opportunities for promotion and for a high	TP	Non-TP	
salary, but where there is a lack of job security			
An organisation with fewer than 30 employees	IF	Non-IF	
where everybody knows everybody else			
An organisation which regards its employees as	NF	Non-NF	***
individuals with unique skills			
An organisation where most employees have	IS	Non-IS	***
more or less the same background			

Significant at: *p<0.05, **p<0.01, ***p<0.001.

Thirteen of the 21 predictions were supported by the data, with the majority being significant at the highest level. It is notable that none of the three whole-Type level predictions were supported by the data. This is perhaps not surprising as it is more difficult to predict the relationship between the complex and dynamic four-letter Types and the rather one-dimensional questions about preferred organisational culture.

In order to establish patterns of reported comfort in different organisational cultures at whole-Type level, the types are ranked in Figure 15.9 according to those who expressed most and least comfort respectively.

Table 15.9: Whole Types reporting most and least comfort in different organisational cultures

Organisational characteristic	Most	Least
organisational orial actoristic	comfort	comfort
An organisation with a clear structure	1. INTJ	1. INTP
where it is always apparent who is	2. ISTJ	2. INFP
responsible for what	3. ISFJ	3. ESFP
	4. ESTJ	4. ISFP
An organisation where the independence	1. ENTP	1. ISTP
of the employees is stressed	2. INFP	2. INFJ
	3. ENFJ	3. ESFP
	4. ENTJ	4. INTJ
An organisation which stresses employee	1. INTJ	1. INFP
loyalty and offers 'lifelong employment'	2. ISFJ	2. ENTJ
	3. ISTJ	3. ENFP
	4. ESTJ	4. ENFP
An organisation where everything is done	1. INTJ	1. ISFP
according to the book	2. ISTJ	2. INTP
	3. ESFJ	3. INFP
	4. ISTP	4. INFJ
An organisation with thousands of	1. ENTJ	1. ISFP
employees, perhaps with activities in	2. INTJ	2. ISFJ
several countries	3. ENTP	3. INFJ
	4. INTP	4. ESFP
An organisation where every job has been	1. ESTP	1. INFJ
rationalised/simplified as much as	2. ENTP	2. ISFJ
possible	3. ISFP	3. INFP
	4. ESTJ	4. ENFP
An organisation where the employees	1. ENTJ	1. ISTP
have different backgrounds	2. ENFJ	2. ISFP
	3. ENTP	3. ISFJ
	4. INFP	4. INTJ
An organisation where an employee can	1. ESTJ	1. ISTP
be responsible for many different areas	2. ENTJ	2. INFJ
	3. ENFJ	3. ISFP
	4. ENTPJ	4. ISTJ
An organisation where everyone is	1. INTJ	1. INTP
expected to 'fit into the established	2. ISFJ	2. INFP
pattern'	3. ISTJ	3. ENFP
	4. ISTP	4. INFJ

An organisation where there are considerable opportunities for promotion and for a high salary, but where there is a lack of job security	1. ENTP 2. ENTJ 3. ISTP 4. ESTP	1. ISFP 2. INFJ 3. ISFJ 4. ENFJ
An organisation with fewer than 30 employees where everybody knows everybody else	1. ENFJ 2. ENFP 3. ESTP 4. ISTP	1. INTP 2. INTJ 3. ENTP 4. ESFJ
An organisation which regards its employees as individuals with unique skills	1. INFP 2. INFJ 3. ENFJ 4. ENFP	1. ISTP 2. INTJ 3. ISTJ 4. ISFP
An organisation where most employees have more or less the same background	1. ISFP 2. ISTP 3. ISFJ 4. ISTJ	1. ENTJ 2. INTP 3. ENTP 4. INFP

The table shows that people with a preference for J, and even the combination of TJ, tend to report feeling more comfortable in organisational cultures that are distinguished by structure and clear delineation of responsibility, stressing the loyalty and responsibility of employees, and where everything is done by the book. The opposite is the case for people with a preference for F and, to some extent, FP.

People with preferences for N and EN feel comfortable in large organisations, where the employees have different backgrounds and are responsible for many different areas, and in organisations where the independence of employees is stressed, whereas people with preferences for I and IS feel least comfortable in cultures of that kind. The latter are more comfortable in organisations where most people have more or less the same background.

Those with a preference for IS report that they are most comfortable in organisations where they are expected to 'fit into the established pattern', while people preferring NP state that they do not feel at home in this type of organisation.

People with a preference for ET feel comfortable in organisations where each job is simplified as much as possible; those with a preference for F feel the opposite.

Organisations where there are considerable opportunities for advancement and high salaries, but where there is little job security, appeal to those with a preference for TP, while the opposite is the case for those with a preference for FJ.

People with a preference for NF appreciate organisations where each employee is regarded as unique, while those with a preference for T feel least comfortable in such environments.

Comfort with different types of job

The Swedish general population sample were also asked to rate their degree of comfort working in different kinds of jobs, on a five-point scale. Predictions about the relationships between the MBTI dimensions and the responses to the questions were made in the same way as described above. The results are shown in Figure 15.10.

Table 15.10: Comfort expressed by different MBTI Types with different kinds of jobs

Job characteristic	Pred	iction	Sig.
	More	Less	
	comfort	comfort	
A job which involves you in a number of	J	Р	*
clear and well-defined projects	S	N	
	SJ	Non-SJ	
A job with considerable variation, some of it	Р	J	***
unexpected	NP	Non-NP	**
	SP	Non-SP	
A job where you are expected to report to	S	N	***
the same manager every day			
A job where more or less the same things	S	N	***
happen every day			
A job which makes considerable demands	Р	J	
on you in terms of working overtime in			
order to meet deadlines or to achieve goals			
A job where you report to a number of	ENP	Non-ENP	
different people depending on the task in			
question			

Significant at: *p<0.05, **p<0.01, ***p<0.001.

Five of the ten predictions were supported by the data. In order to establish patterns of reported comfort with different work methods at whole-Type level, the Types are ranked in Figure 15.11 according to those who expressed most and least comfort respectively.

Table 15.11: Whole Types reporting most and least comfort with different kinds of jobs

Job characteristic	Most	Least
	comfort	comfort
A job which involves you in a number of	1. INTJ	1. ISFJ
clear and well-defined projects	2. ENTJ	2. INTP
	3. ESTJ	3. ESTP
	4. ENTP	4. ESFP
A job with considerable variation, some of it	1. ESTP	1. ISFP
unexpected	2. ENFP	2. INFJ
	3. INFP	3. ISTJ
	4. ENFJ	4. ISFJ
A job where you are expected to report to	1. INTJ	1. ENFP
the same manager every day	2. ISTP	2. INFP
	3. ISFJ	3. INTP
	4. ESFJ	4. INFJ
A job where more or less the same things	1. INTJ	1. ENFP
happen every day	2. ISFJ	2. ENTP
	3. ESFJ	3. INFJ
	4. ISTJ	4. INTP
A job which makes considerable demands on	1. ENTJ	1. INFJ
you in terms of working overtime in order to	2. ESTP	2. INFP
meet deadlines or to achieve goals	3. ENTP	3. ENFJ
	4. ESFP	4. ISFJ
A job where you report to a number of	1. ENTJ	1. INFJ
different people depending on the task in	2. INTJ	2. ISTP
question	3. INFP	3. ISFJ
	4. ENTP	4. ISFP

The results show that people with preferences for T and J and also for the combination TJ tend to report comfort in work involving stability, continuity and clarity. N and P preferences are to be found among the Types reporting least comfort in such work; they state instead that they are most comfortable in jobs with considerable variation, less structure and a less predictable course of events.

People with preferences for E and T report a high degree of comfort in jobs that are more demanding in terms of time pressures or performance.

Types with a preference for I and the combination IJ as well as IFJ feel less comfortable in jobs offering variation and unexpected events or where they have to work with goal-oriented time pressures in order to achieve deadlines. These Types are more comfortable when they are

MBTI Step I European Data Supplement

allowed to work on their own, to concentrate on one thing at a time and to have a working situation which is organised and planned in advance.

Correlations with other instruments

Correlations between the MBTI Step I questionnaire and other psychometric instruments is another way of establishing construct validity.

The Hogan Personality Inventory

The Hogan Personality Inventory (HPI) (Hogan and Hogan, 1997, 2002, in Swedish) is a well-known measure of normal personality that is based on the Five-Factor Model of personality, and is designed to predict occupational success. Figure 15.12 shows relationships found between the MBTI dimensions and the seven HPI scales. The table shows the relationships predicted by MBTI experts, and also which of these predictions were either supported or not supported by the data.

Table 15.12: Relationship between MBTI dimensions and HPI scales (n=212)

HPI scale	Description	Prediction	Sig.
Adjustment	Measures the degree to which a person appears calm and self-accepting or, conversely, self-critical or tense	E	
Ambition	Measures the degree to which a person	Е	***
	seems socially self-confident, leader-like,	Т	*
	competitive and energetic	EJ	*
		ENTJ	**
		ESTJ	*
Sociability	Measures the degree to which a person	Е	***
	seems to need and/or enjoy interacting	N	**
	with others	EF	**
		EN	***
		ENP	***
Agreeability	Measures the degree to which a person is	F	***
	seen as perceptive, tactful and socially	E	***
	sensitive	EF	***
		NF	
		SF	**
		ENFP	*
Prudence	Measures the degree to which a person	S	
	seems conscientious, conforming and	J	**
	dependable	SJ	**
Intellectance	Measures the degree to which a person is	N	
	perceived as bright, creative and	Т	*
	interested in intellectual matters	NT	**
Scholarship	Measures the degree to which a person seems to enjoy academic activities and to value educational achievement for its own sake	N	

Correlation significant at: *p<0.05, **p<0.01, ***p<0.001.

Of a total of 24 predictions, only five were not supported by the data. This shows that the relationships between MBTI dimensions and HPI scales are similar to what would be expected, hence providing evidence of construct validity.

The Motivation, Values and Preferences Inventory

The Motives, Values and Preferences Inventory (MVPI) (Hogan and Hogan, 1996, Swedish trial version, Psykologiförlaget, 2003) provides a measure of an individual's core values, goals and interests. It consists of ten scales, which are core values, goals and activities that form part of an individual's identity. Table 15.13 shows relationships found between the MBTI dimensions and the ten MVPI scales. The

table shows the relationships predicted by MBTI experts, and also which of these predictions were either supported or not supported by the data.

Table 15.13: Relationship between MBTI dimensions and MVPI scales (n=86)

MVPI scale	Description	Prediction	Sig.
Aesthetics	Need for self-expression: wanting to infuse quality into the look, feel and design of work products	N	***
Affiliation	Wanting frequent and varied social	F	*
	contact	EF	*
Altruistic	Wanting to help, serve and encourage others	EF	
Commerce	Interest in money, profits, investment and business opportunities	Т	*
Hedonism	Wanting fun, variety, excitement and pleasure	S	*
Power	Wanting to be in control, to succeed and	Т	*
	to create a legacy	ET	*
		NT	*
Recognition	Wanting to be known, recognized, appreciated and famous	No prediction	
Science	Enjoying research, interested in technology and preferring data-based decisions	N	
Security	Need for predictability, structure and	S	*
	order	SJ	*
Tradition	Believing in personal customs, duty, hard work and respect for authority	J	*

Correlation significant at: p<0.05, p<0.01, p<0.001.

Of a total of 13 predictions, only two were not supported by the data. Although based on a rather small sample size, these data provide further evidence of construct validity.

The Innovation Potential Indicator

The Innovation Potential Indicator (IPI) (Patterson, 1999, Swedish trial version, Psykologiförlaget, 2002) looks at behaviours that enhance or impede the development and generation of new ideas, processes and products within organisations. The results of this questionnaire can be used to understand how innovative an individual has the potential to be. The IPI consists of four scales. Table 15.14 shows relationships

found between the MBTI dimensions and the four IPI scales. The table shows the relationships predicted by MBTI experts, and also which of these predictions were either supported or not supported by the data.

Table 15.14: Relationship between MBTI dimensions and IPI scales (n=212)

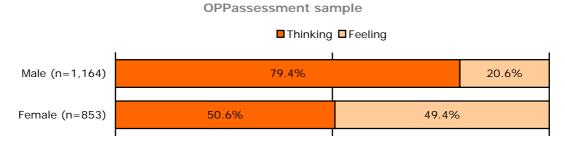
MVPI scale	Description	Prediction	Sig.
Motivation to	The motivation component. Here, a	Р	
Change	person's drive to seek and adopt	E	***
	change is measured.	EN	
Challenging	The social component. This element	Т	**
Behaviour	assesses how an individual interacts,	E	*
	and the likelihood that they will	ET	**
	challenge the thinking of others in		
	order to solve problems at work.		
Adaption	The problem-solving component. This	SJ	*
	evaluates whether an individual		
	typically prefers tried-and-tested		
	methods when tackling issues and		
	solving problems.		
Consistency	The action component. This measures	J	***
of Work	a person's inclination to work		
Styles	methodically and systematically in		
	accordance with the norms of the		
	organisation.		

Correlation significant at: *p<0.05, **p<0.01, ***p<0.001.

Again, the patterns within the data are as would be expected, showing clear links in the expected direction in most instances.

In summary, there is good evidence for the validity of the Swedish MBTI Step I instrument. Specifically:

- There is a high level of agreement between best-fit and reported Type, as high as for the English language version.
- Respondents are confident about their results.
- Respondents of different Types have preferences for different kinds of organisational cultures and jobs that are consistent with what we would expect from Type theory.
- Scores on the MBTI Step I dimensions show clear relationships in the expected direction with scores on other instruments that measure related psychological constructs.


Group differences in Type

The large OPPassessment sample was used to explore group differences in Type. The relationship of Type to each of the demographic factors for which information was gathered is described below.

Gender

Across countries, most groups who complete the MBTI questionnaire show a significant gender difference on the Thinking–Feeling dimension, and this is the case for the group in this study, as shown in Figure 15.1.²³³

Figure 15.1: Gender differences on the T–F dimension

When compared with the T–F distribution in the combined sample, Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women. This effect has been found many times with many different language versions of the instrument in a number of different cultures.

Age

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, for Sensing versus iNtuition, for Thinking versus Feeling and for Judging versus Perceiving. The OPPassessment sample showed a statistically significant relationship between age and only one of the dimensions, ²³⁴ as shown in Table 15.15. The mean age of people with a

 $^{^{233}}$ χ^2 =165.97; significant at p<0.001.

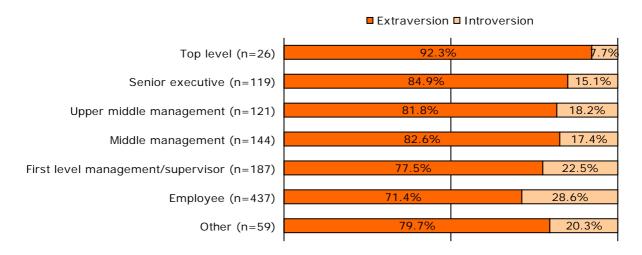
²³⁴ Independent-samples t-tests; significant at p<0.001.

preference for Feeling was approximately one and a half years higher than of those with a preference for Thinking.

Table 15.15: Significant mean age differences

	Thinking	Feeling	Difference	Significance
Mean age	40.60	42.27	1.67	***
(years)				

Difference significant at: *p<0.05, **p<0.01, ***p<0.001.

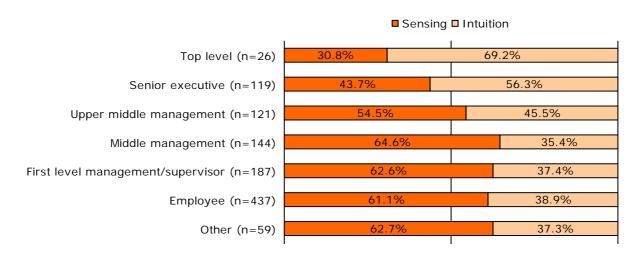

Occupational level

Previous research in other countries has demonstrated that individuals in higher-level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower-level jobs (Quenk, Hammer and Majors, 2004).

This is reflected in the relationship of the Sensing–iNtuition and Thinking–Feeling dimensions with occupational level in the OPPassessment sample. A relationship was also found with the Extraversion–Introversion dimension.

The data suggest that individuals at the top level are most likely to have a preference for Extraversion, and that the proportion of people with Extraversion preferences decreases steadily with occupational level down to employees (with the exception of upper middle management and middle management, which are similar), as shown in Figure 15.2.

Figure 15.2: Extraversion–Introversion²³⁵ and occupational level (OPPassessment data)



The data also suggest that individuals at the top level are most likely to have a preference for iNtuition, followed by senior executives and those in upper middle management. The proportions of people with preferences for iNtuition were lowest amongst those from middle management down to employee level, as shown in Figure 15.3.

368

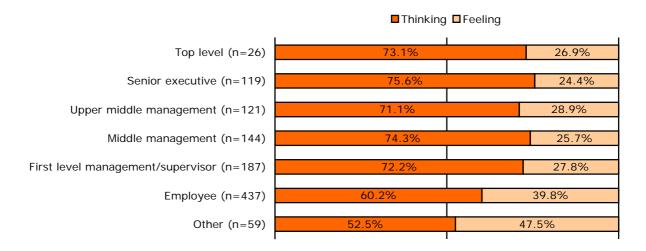
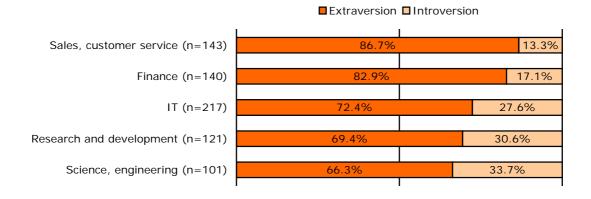

 $^{^{235}}$ $\chi^2 = 19.95$; significant at p<0.01.

Figure 15.3: Sensing-iNtuition²³⁶ and occupational level (OPPassessment data)

It was also found that those with a preference for Thinking are slightly under-represented at employee level, as shown in Figure 15.4. All other occupational levels contained a similar (higher) proportion of Thinking Types.

Figure 15.4: Thinking–Feeling²³⁷ and occupational level (OPPassessment data)

 $^{^{236}\,\}chi^2{=}\,24.88;$ significant at p<0.001. $^{237}\,\chi^2{=}\,25.82;$ significant at p<0.001.


Education

Specific educational qualifications were not collected for the OPPassessment sample; however, the age at which individuals left fulltime education was. Those who left full-time education at a higher age were significantly more likely to have a preference for iNtuition. 238 However, although statistically significant, the difference was only one year in real terms.

Work area

Previous research into MBTI Type suggests that an individual's Type influences their choice of career (Hammer, 1998), and indeed the data in this chapter show that there is a statistically significant relationship between three of the dimensions and work area. The Judging-Perceiving dimension was not shown to exhibit a significant relationship with job type. In the figures that follow, categories have been re-ordered according to the percentage of E, S or T, and work areas with fewer than 100 respondents have been omitted (as well as undefined work areas such as 'Other').

Figure 15.5: Extraversion-Introversion²³⁹ and work area

370

 $^{^{238}}$ Independent-samples t-test; t=-2.600, significant at p<0.01. 239 $\chi^2{=}35.88;$ significant at p<0.01.

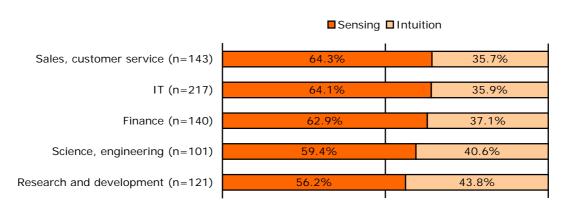
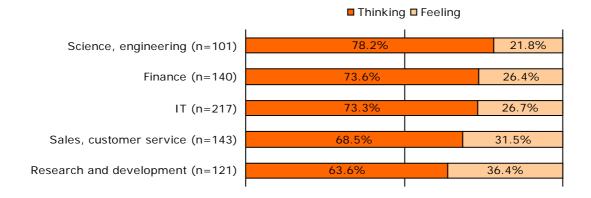



Figure 15.6: Sensing-iNtuition²⁴⁰ and work area

Figure 15.7: Thinking-Feeling²⁴¹ and work area

Nationality

Information on nationality was available for the OPPassessment group. Ninety-three per cent of the group were Swedish; other nationalities included Finnish, Danish and Norwegian. However, no other nationality was represented in sufficiently large numbers for an analysis of Type differences by nationality to be conducted.

Employment status

Employment status information was available for the OPPassessment sample. However, the only two categories containing a sufficiently large number of people for the results to be compared were 'full-time' and 'part-time'. The analyses showed differences across the two groups on two dimensions, Thinking-Feeling²⁴² and Judging-

 $^{^{240} \}chi^2 = 30.65$; significant at p<0.01.

 $[\]chi^2 = 55.55$; significant at p<0.001. $\chi^2 = 18.64$; significant at p<0.001.

MBTI Step I European Data Supplement

Perceiving. 243 Those who worked full-time were more likely to have preferences for Thinking and Perceiving than those who worked part-time. The Thinking–Feeling pattern is likely to be a gender effect; 93% of part-time workers were female, compared with 46% of the total group and 42% of full-time workers.

 $^{^{243}}$ χ^2 =5.63; significant at p<0.05.

Appendix 1: Sample descriptions

Sample 1: Swedish general population sample

This sample consists of 349 research study participants who completed the MBTI Step I questionnaire in spring 2002, and 565 individuals who responded to a random sampling of the Swedish general population in autumn 2002. Fifty-four per cent of the respondents were male and 46% were female. The mean age of the group was 43 years.

A range of education levels were represented:

Education level	Percentage
Higher degree	1%
>3 years university study	28%
<3 years university study	14%
Compulsory school + 3-4 years high school	21%
Compulsory school + 2 years high school	16%
Compulsory school	17%
Not disclosed	3%

The majority of the people were in salaried employment:

Occupation	Percentage
Salaried employment	61%
Studies/retraining	9%
Self-employed	8%
Temporary staff	7%
Early retirement	4%
Senior citizen	4%
Long-term sickness	3%
Unemployed	3%
Maternity/paternity leave	1%

The full range of organisational levels was represented, with 'workers' forming the largest group:

Organisational level	Percentage
Senior manager	5%
Middle manager	9%
Supervisor/project leader	10%
Senior administrator/specialist (non-	15%
managerial)	
Lower level administrator	16%
Worker	38%
Self-employed	3%
Not disclosed	4%

Sample 2: Data from OPPassessment (representative Swedish-speaking professional and managerial sample)

This sample consists of 1,817 individuals who completed the MBTI Step I questionnaire in Swedish via the OPPassessment system between January 2004 and June 2008. Fifty-three per cent of the respondents were male and 47% were female. Age ranged from 20 to 69 years, with a mean of 41 and median of 40.

Nationality was disclosed by 73% of respondents. Of these, 93% were Swedish. No other individual nationality was represented in large numbers.

Nationality	Percentage
Swedish	93.1%
Other	3.5%

The majority of the group were in full-time employment:

Employment status	Percentage
Full-time	90.9%
Part-time	6.2%
Self-employed	2.0%
Unemployed	0.4%
Retired	0.4%
Homemaker	0.0%

The majority of the group were of managerial level or above, although the largest single group was employee level (40.0%):

Occupational level	Percentage
Top level	2.4%
Senior executive	10.9%
Upper middle management	11.1%
Middle management	13.2%
First level	17.1%
management/supervisor	
Employee	40.0%
Other	5.4%

A range of work areas were represented:

Work area (job type)	Percentage
IT	19.7%
Sales, customer service	13.0%
Finance	12.7%
Research and development	11.0%
Science, engineering	9.1%
Admin or secretarial	4.3%
HR, training, guidance	4.2%
Education	3.6%
Business services	1.3%
Health, social services etc.	1.3%
Land, sea or air transport	0.6%
Skilled operative	0.3%
Unskilled operative	0.3%
Other private sector	11.1%
Other public sector	0.9%
Other	6.8%

Sample 3: Management development programme participants

This sample consists of 228 Swedish participants on management development programmes at Ashridge Business School, run between 2000 and 2003. Seventy-nine per cent of the group were male and 21% female. Age ranged from 26 to 63 years.

Sample 4: Swedish psychology students – best-fit study

This sample consists of 50 psychology students at Stockholm University who participated in a test–retest study during 2002. Sixty-two per cent were female and 38% were male. The mean age of the group was 33 years. No other demographic data were collected for this group.

Sample 5: Delegates on Swedish MBTI qualifying training courses

The sample consisted of 70 MBTI training course delegates who undertook training with Assessio during 2002. Seventy-seven per cent of the respondents were female and 23% were male. The mean age of the group was 43 years.

MBTI Step I European Data Supplement

The majority of the group were educated to degree level:

Education level	Percentage
Higher degree	4%
>3 years university study	73%
<3 years university study	16%
Compulsory school + 3-4 years high school	3%
Compulsory school + 2 years high school	3%
Compulsory school	1%

Everyone was either in salaried employment or self-employed:

Occupation	Percentage
Salaried employment	90%
Self-employed	10%

A broad range of organisational levels was represented, with 'Senior administrator/specialist (non-managerial)' forming the largest group:

Organisational level	Percentage
Senior manager	9%
Middle manager	4%
Supervisor/project leader	10%
Senior administrator/specialist	43%
(non-managerial)	
Lower level administrator	19%
Other activity	1%
Not disclosed	14%

 $\mathsf{MBTI}^{\mathbb{R}}$ Step I^{m} instrument

European Data Supplement

Turkish

December 2016

MBTI Step I European Data Supplement

Contents

Introduction	379
Type distribution	380
OPPassessment 2010-15 sample	
Internal consistency reliability	
Intercorrelations between MBTI dimensions	
Validity: the accuracy of the Turkish MBTI Step I instrument in	
predicting best-fit Type	384
Group differences in Type	
Gender	
Age	385
Occupational level	385
Education	
Work area	385
Nationality	385
Employment status	
Appendix 1: Sample description	
Sample 1: OPPassessment 2010-2015 sample	
Sample 2 : OPPassessment Step I sample	

© Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner.

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

- ® MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.
- $^{\text{TM}}$ Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.
- \circledR OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. \intercal M OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Introduction

Because the Turkish language version of the MBTI questionnaire is so new, the amount of data collected so far is limited.

This chapter contains details of the analysis conducted on an initial sample of data from OPPassessment. Two samples were used to create the data in this supplement. A brief description of the sample is given below.

- OPPassessment 2010-15 sample: The sample consisted of 210 individuals who completed the MBTI Step I instrument in Turkish via the OPPassessment system between 1st January 2010 and 15th September 2015. 244 245
- OPPassessment Step I reliability sample: 239 individuals who completed the MBTI Step I instrument in Turkish via OPPassessment between 1st January 2010 and 15th September 2015. 246

The results of the analyses are outlined below.

 $^{^{244}}$ OPPassessment allows personality questionnaires such as the MBTI instrument to be administered via email and/or completed online. 245 The data was downloaded on 16th September 2015 and therefore only includes individuals who

generated an MBTI report by 16th September 2015.

246 The data was downloaded on 7th April 2016 and includes individuals who generated an MBTI report by

^{7&}lt;sup>th</sup> April 2016, which explains why this sample is larger than the above sample.

Type distribution

Type tables are a way of illustrating the proportion of each Type within a particular group. Opposite are Type tables for the Turkish sample described on the previous page.

For each of the 16 different Types, the number of cases, the percentage of the total that this represents and the self-selection ratio (SSR) are shown. The SSR (Myers et al., 1998) is a way of demonstrating whether a given Type appears more or less often in a particular group than would be expected given its frequency in a reference group. An SSR of greater than 1 indicates that a Type is over-represented, and an SSR of less than 1 denotes that it is underrepresented. Asterisks are used to denote whether the over- or underrepresentations are statistically significant, based on the results of chisquare analysis²⁴⁷.

Ideally, the Type distribution from a large representative sample of the Turkish population would be used to calculate SSRs in this data supplement. However, such a sample does not currently exist. In its place, SSRs have been calculated using Type data from the UK general population (Kendall, 1998). Evidence (eg Hackston and Kendall, 2004; Quenk et al., 2004; Kirby, Kendall and Barger, 2007) does suggest that although Type-related behaviours vary a good deal from country to country and from culture to culture, the frequencies of underlying MBTI Types do not.

380

 $^{^{247}}$ Chi-square analysis (often abbreviated to $\chi^2)$ is a technique used to explore whether observed frequency distributions differ significantly from other, predefined, distributions. In this case, the UK general population group is used as the reference group, and the chi-square analysis indicates whether the proportion of people of each Type within a particular sample differs significantly from the proportion of people reporting the same Type within the reference group.

OPPassessment 2010-15 sample

Table 16.1: Type table for OPPassessment 2010-15 data

Reported Type (n=210)

ISTJ	ISFJ	INFJ	INTJ	Туре	n	%
n=26	n=3	n=2	n=9	E	158	75.2%**
12.4%	1.4%	1.0%	4.3%	1	52	24.8%**
SSR=0.90	SSR=0.11**	SSR=0.59	SSR=3.07**			
ISTP	ISFP	INFP	INTP	S	116	55.2%**
n=2	n=1	n=2	n=7	N	94	44.8%**
1.0%	0.5%	1.0%	3.3%	_	400	00 504 44
SSR=0.16**	SSR=0.08**	SSR=0.31	SSR=1.38	T	188	89.5%**
ESTP	ESFP	ENFP	ENTP	F	22	10.5%**
n=4	n=0	n=2	n=13	1.	470	05 00/++
1.9%	0.0%	1.0%	6.2%	J	179	85.2%**
SSR=0.33*	SSR=0.00**	SSR=0.16**	SSR=2.21**	P	31	14.8%**
ESTJ	ESFJ	ENFJ	ENTJ			
n=69	n=11	n=1	n=58			
32.9%	5.2%	0.5%	27.6%			
SSR=3.16**	SSR=0.41**	SSR=0.18*	SSR=9.59**			

^{*}Difference between Turkish sample and UK general population significant at p<0.05, based on chi-square results.

Looking at reported Type, the most frequent Type preference is ESTJ (33% of the total), followed by ENTJ (27.6%). Overall, the group tends to have a preference for Extraversion, Thinking and Judging, and to a lesser extent for Sensing.

It should be noted that the wider applicability of these Type distributions should not be overstated as the samples on which they are based cannot be considered to be representative of any wider group. Further Type distribution data will be added to this supplement as it becomes available.

^{**}Difference significant at p<0.01, based on chi-square results.

Internal consistency reliability

The reliability of a test or questionnaire relates to how consistent and precise it is. Internal consistency reliability addresses the question of whether all the questions in a scale measure the same construct. A common measure of internal consistency reliability is coefficient alpha (Cronbach, 1951). The alpha coefficients for the Turkish OPPassessment Step I sample are shown in Table 16.2.

Table 16.2: Internal consistency reliability

Dimension	Coefficient alpha
E-I	0.87
S-N	0.76
T–F	0.71
J–P	0.75

It is generally agreed that internal consistency reliability should achieve a value of at least 0.7 for a test to be considered to be reliable. ²⁴⁸ On this basis, all of the dimensions of the questionnaire show good reliability.

382

²⁴⁸ For example, see Nunnally (1978) or Kline (2000).

Intercorrelations between MBTI dimensions

One of the original aims of developing the MBTI questionnaire was to see if dimensions could be produced that were independent of each other. Results from other language versions have shown that this was achieved with all dimensions except Sensing–iNtuition and Judging–Perceiving. This shows up despite the fact that questions were carefully chosen to sort on only one dimension. The author of the questionnaire hypothesised that the S–N/J–P relationship may simply be a reflection of reality rather than a failing in the construction of the questionnaire.

The intercorrelations between dimensions amongst the OPPassessment sample are shown in Table 16.3. In order to be able to calculate the correlations, scores on each dimension were converted to continuous scores. ²⁴⁹

	E-I	S-N	T-F	J-P
E-I		-0.17*	-0.01	0.10
S-N			-0.08	0.34**
T-F				0.24**
I_D				

Table 16.3: Intercorrelations between dimensions

The S–N/J–P relationship that has been found with other language versions has been replicated, showing that a preference for Sensing is likely to be associated with a preference for Judging, and that a preference for iNtuition is likely to be associated with a preference for Perceiving.

In addition, for this sample, T–F has also been shown to correlate moderately with J–P, suggesting that a preference for Thinking is likely to be associated with a preference for Judging, and that a preference for Feeling is likely to be associated with a preference for Perceiving. There is also a small correlation between E–I and S–N, suggesting that a preference for Extraversion is associated with a preference for iNtuition and a preference for Introversion is associated with a preference for Sensing.

At present, we do not have sufficient data to know whether these reflect a true relationship amongst people who take the Turkish questionnaire, or whether the findings are sample-specific. This will be explored once more data become available.

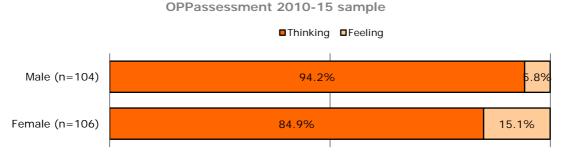
^{**}Significant at *p<0.05, **p<0.01.

²⁴⁹ Continuous scores (Myers and McCaulley, 1985, p. 9) place an individual's score on each dimension onto a continuous scale with a mid-point of 100. To calculate continuous scores, Preference Clarity Index (PCI) scores for each dimension are either subtracted or added to 100, depending on which direction the overall preference is. PCI scores in the direction of E, S, T or J are subtracted from 100. PCI scores in the direction of I, N, F or P are added to 100.

Validity: the accuracy of the Turkish MBTI Step I instrument in predicting best-fit Type

The purpose of the MBTI instrument is to help individuals to establish their validated or 'best-fit' psychological Type. A key measure of the validity of the instrument is, therefore, how well the results relate to best-fit (validated) Type. These data are useful to practitioners in knowing how typically accurate the reported result is likely to be.

Unfortunately, no best-fit data are available for this sample. This will be explored once more data become available.


Group differences in Type

Various types of demographic information were collected for the Turkish questionnaire development sample. The relationship of MBTI Type to each of these factors is described below.

Gender

Most groups who take the MBTI questionnaire show a significant gender difference on the Thinking–Feeling dimension, and this is the case for the group in this study, as shown in Figure 16.4.²⁵⁰

Figure 16.4: Gender differences on the T–F dimension

When compared with the T–F distribution in the combined sample, Thinking preferences are over-represented amongst men and Feeling preferences are over-represented amongst women (although even amongst women in this group there are more people with a preference for Thinking than Feeling). This effect has been found many times with many different versions of the instrument in a number of different cultures.

 $^{^{250} \}chi^2 = 4.87$; significant at p<0.05.

Age

Previous research using UK Step I continuous scores has shown significant correlations between age and three of the four dimensions (Warr, Miles and Platts, 2001). Older people were more likely than younger people to have preferences for Introversion, Sensing and Judging.

The data in this supplement were analysed in a slightly different way, by looking for differences in average age between people with preferences for Extraversion versus those with preferences for Introversion, for Sensing versus iNtuition, for Thinking versus Feeling and for Judging versus Perceiving.

The sample showed no statistically significant relationships between age and any of the dimensions. A further analysis when more data become available will allow us to explore this further.

Occupational level

Previous research in other countries has demonstrated that individuals in higher level jobs in organisations are more likely to have preferences for iNtuition and for Thinking than those in lower level jobs (Quenk, Hammer and Majors, 2004).

The sample used in the development of the Turkish questionnaire was not large enough to explore this fully. Just over half the respondents described their occupational level and the number of individuals in each category was too small for a full analysis.

Education

Specific educational qualifications were not available for the sample; however, the age at which individuals left full-time education was available. There were found to be no links between MBTI dimensions and the age at which individuals left full-time education.

Work area

Previous research into MBTI Type suggests that an individual's Type influences their choice of career (Hammer, 1998). However, the number of different work areas covered by this sample was so broad that the number of people in each category was too small for analyses to be conducted. This is another example of where further analysis will be conducted when more data become available.

Nationality

Nationality was disclosed by 99% of the sample. Of these, 98% were Turkish. No other nationality was represented in sufficiently large

MBTI Step I European Data Supplement

numbers for an analysis of Type differences by nationality to be conducted.

Employment status

Employment status (ie whether a person works full-time, part-time, is self-employed, etc) was disclosed by 77% of the sample. Of these, 98% were working full-time. No other employment status was represented in sufficiently large numbers for an analysis of Type differences by employment status to be conducted.

Appendix 1: Sample description

Sample 1: OPPassessment 2010–2015 sample

This sample consists of 210 individuals who completed the MBTI Step I or Step II questionnaire in Turkish via the OPPassessment system between January 2010 and September 2015. Of these individuals, 50.5% were female and 49.5% were male. Age ranged from 25 to 69 years, with a mean of 37 and median of 36.

Nationality was disclosed by 99% of respondents. Of these, 98% were Turkish. No other individual nationality was represented in large numbers.

Nationality	Percentage
Turkish	97.6%
Other	2.4%

The majority of those who disclosed their employment status were in full-time employment:

Employment status	Percentage
Full-time	74.8%
Part-time	1.0%
Self-employed	0.0%
Retired	0.0%
Homemaker	0.5%
Unemployed	0.5%
Not disclosed	23.3%

Of those who disclosed their occupational level, many were of managerial level or above, although the largest single group was middle management level (21.9%):

Occupational level	Percentage
Top level	2.4%
Senior executive	11.4%
Upper middle management	19.5%
Middle management	21.9%
First-level	5.7%
management/supervisor	
Employee	11.9%
Not disclosed	27.1%

A range of work areas were represented:

Work area (job type)	Percentage
Finance	18.6%
Other private sector	15.2%
HR, training, guidance	7.1%
Science, engineering	6.7%
Sales, customer service	5.7%
IT	3.3%
Business services	3.3%
Admin or secretarial	1.9%
Health, social services etc.	1.9%
Research and development	1.4%
Other	6.2%
Not disclosed	28.6%

Sample 2 : OPPassessment Step I sample

This sample consists of 239 individuals who completed the MBTI Step I questionnaire in Turkish via the OPPassessment system between January 2010 and September 2015. Of these individuals, 51% were female and 49% were male. Age ranged from 25 to 63 years, with a mean of 37 and median of 35.

Nationality was disclosed by 91% of respondents. Of these, 98% were Turkish. No other individual nationality was represented in large numbers.

Nationality	Percentage
Turkish	97.7%
Other	2.3%

The majority of those who disclosed their employment status were in full-time employment:

Employment status	Percentage
Full-time	68.6%
Part-time	0.8%
Homemaker	0.4%
Unemployed	0.4%
Not disclosed	29.7%

Of those who disclosed their occupational level, many were of managerial level or above, although the largest single group was middle management level (19.7%):

Occupational level	Percentage
Top level	2.1%
Senior executive	10.0%
Upper middle management	18.0%
Middle management	19.7%
First-level	5.0%
management/supervisor	
Employee	10.9%
Not disclosed	34.3%

MBTI Step I	European	Data S	upplement
-------------	----------	--------	-----------

$\mathsf{MBTI}^{\mathbb{R}}$ Step I^{m} instrument

European Data Supplement

Bibliography and Step I references

January 2009

OPP Ltd Elsfield Hall 15–17 Elsfield Way Oxford OX2 8EP UK t: +44 (0)1865 404 500

MBTI Step I European Data Supplement

© Copyright 2009, 2016 OPP Ltd except where otherwise noted on individual pages in this publication. All rights reserved.

No portion of this publication may be translated or reproduced in whole or in part, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner.

No part of this publication is reproducible under any photocopying licence scheme. OPP Ltd grants the downloader a personal, non-transferable, perpetual, irrevocable right to use the European Data Supplement ('the Supplement'). The Supplement is for personal use only and may not be sold on or circulated to third parties.

- ® MBTI, Myers-Briggs, the Myers-Briggs Type Indicator and the MBTI logo are trade marks or registered trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.
- ™ Step I and Step II are trade marks of the Myers & Briggs Foundation in the United States and other countries. OPP Ltd is licensed to use the trade marks in Europe.
- 8 OPP and the OPP logo are trade marks and registered trade marks of OPP Ltd. $^{\text{TM}}$ OPPassessment and the OPPassessment logo are trade marks of OPP Ltd.

Bibliography

- Carr M, Curd J and Dent F. Ashridge Management School MBTI Research into Distribution of Type. Ashridge Management School, 2004.
- Casas E. The development of the French version of the MBTI in Canada and in France. *Journal of Psychological Type*, 20, 3–15, 1990.
- Cattell RB, Cattell AK and Cattell HEP. Sixteen Personality Factor Fifth Edition Questionnaire. Champaign, IL: Institute for Personality and Ability Testing, 1993.
- Cronbach LJ. Coefficient alpha and the internal structure of tests. *Psychometrika*, 16(3), 297–334, 1951.
- Cauvin P and Cailloux G. Données statistiques in Manuel de formation qualifiante au MBTI Présentées à la conférence internationale de Scottsdale, 1999
- Cauvin P and Cailloux G. L'instrument MBTI in Les types de personnalité ESF Paris, 6° édition, 2005
- Fleenor JW. The relationship between the MBTI and measures of personality and performance in management groups. In *Developing Leaders*.. Palo Alto, CA: Davies-Black, 1997.
- Hackston J, McPherson R and Hindmarch L. *The Relationship between the MBTI® Step I Instrument and the 16PF®5 in an Outplacement Sample*, 2004. Available from http://www.opp.eu.com/research_findings.aspx.
- Hackston J and Kendall E. Step II and Culture. Paper presented at the APT international conference, Toronto, July 2004.
- Hammer AL. *Introduction to Type and Careers*. Mountain View, CA: CPP, Inc., 1998.
- Hammer AL and Mitchell WD. The distribution of MBTI types in the U.S. by gender and ethnic group. *Journal of Psychological Type*, 37, 2–15, 1996
- Hogan J and Hogan R. *Motives, Values, Preferences Inventory Manual.* Tulsa, OK: Hogan Assessment Systems, 1996.
- Hogan J and Hogan R. *Hogan Personality Inventory*. Tulsa, OK: Hogan Assessment Systems, 1997.
- Kendall E. Myers-Briggs Type Indicator European English Edition Step I Manual Supplement. Mountain View, CA: CPP, Inc., 1998.

- Kirby LK, Kendall E and Barger NJ. *Type and Culture; Using the MBTI*[®] *Instrument in International Applications*. Mountain View, CA: CPP, Inc., 2007.
- IPAT. *Nederlandse 16PF® Testhandleiding*. Champaign, IL: Institute for Personality and Ability Testing, 2007.
- Kline P. *Handbook of Psychological Testing* 2nd ed. London; Routledge, 2000.
- Lorenz T and Oppitz S. *30 Minuten für Profil-ierung durch Persönlichkeit*. Offenbach: Gabal Verlag, 2004.
- MacDaid GP, McCaulley MH and Kainz RL. *Atlas of Type Tables*. Gainesville, FL: Center for Applications of Psychological Type, 1991.
- MBTI Step I Swedish Version Manual Supplement. Psykologiförlaget AB, 2003.
- Myers IB and McCaulley MH. *Manual: A Guide to the Development and Use of the Myers-Briggs Type Indicator.* Mountain View, CA: CPP Inc., 1985.
- Myers IB, McCaulley MH, Quenk NL and Hammer AL. *MBTI Manual: A Guide to the Development and Use of the Myers-Briggs Type Indicator.* Mountain View, CA: CPP Inc., 1998.
- Nunnally JC. *Psychometric Theory*, 2nd ed. New York: McGraw-Hill, 1978.
- Patterson F. *The Innovation Potential Indicator. Manual and User's Guide.* Oxford: OPP Ltd, 1999.
- Quenk NL, Hammer AL and Majors MS. *MBTI Step II Manual: Exploring the Next Level of Type, European Edition*. Mountain View, CA: CPP, Inc., 2004.
- Russell MT and Karol DC. *The UK Edition of the 16PF Administrator's Manual*. Champaign, IL: Institute for Personality and Ability Testing, 1994.
- Warr P, Miles A and Platts C. Age and personality in the British population between 16 and 64 years. *Journal of Occupational and Organizational Psychology*, 74(4), 165–99, 2001.